
Evaluate $\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }$.
Answer
558k+ views
Hint: We know the magnitude of the trigonometric ratios of standard angles. Therefore, substitute the values of $\sec {60^ \circ }$ and ${\text{cosec}}{60^ \circ }$ in the given expression to find the required answer.
Formula used: Trigonometric ratios of the standard angles are given by:
Therefore, $\sec {60^ \circ } = 2$ and ${\text{cosec}}{60^ \circ } = \dfrac{2}{{\sqrt 3 }}$
Complete step-by-step solution:
From the above table, let’s recall that $\sec {60^ \circ } = 2$ and ${\text{cosec}}{60^ \circ } = \dfrac{2}{{\sqrt 3 }}$
Therefore, substituting the values in the given expression, we get
$\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }$
$ = \dfrac{1}{{\sqrt 3 }} \times 2 - \dfrac{2}{{\sqrt 3 }}$
$ = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{\sqrt 3 }}$
$ = 0$
Therefore the value of $\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }$ is 0.
Note: Note the following important formulae of trigonometry:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
$${\sec ^2}x - {\tan ^2}x = 1$$
$${\operatorname{cosec} ^2}x - {\cot ^2}x = 1$$
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Formula used: Trigonometric ratios of the standard angles are given by:
| 0° | 30° | 45° | 60° | 90° | |
| sinx | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| cosx | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| tanx | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| cotx | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| cosecx | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| secx | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Therefore, $\sec {60^ \circ } = 2$ and ${\text{cosec}}{60^ \circ } = \dfrac{2}{{\sqrt 3 }}$
Complete step-by-step solution:
From the above table, let’s recall that $\sec {60^ \circ } = 2$ and ${\text{cosec}}{60^ \circ } = \dfrac{2}{{\sqrt 3 }}$
Therefore, substituting the values in the given expression, we get
$\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }$
$ = \dfrac{1}{{\sqrt 3 }} \times 2 - \dfrac{2}{{\sqrt 3 }}$
$ = \dfrac{2}{{\sqrt 3 }} - \dfrac{2}{{\sqrt 3 }}$
$ = 0$
Therefore the value of $\dfrac{1}{{\sqrt 3 }}\sec {60^ \circ } - {\text{cosec}}{60^ \circ }$ is 0.
Note: Note the following important formulae of trigonometry:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
$${\sec ^2}x - {\tan ^2}x = 1$$
$${\operatorname{cosec} ^2}x - {\cot ^2}x = 1$$
$\sin ( - x) = - \sin x$
$\cos ( - x) = \cos x$
$\tan ( - x) = - \tan x$
$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

