
How do you evaluate ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$?
Answer
446.1k+ views
Hint: In order to find the solution of a trigonometric equation, we start by taking the inverse trigonometric function like inverse sin, inverse cosine, inverse tangent on both sides of the equation and then set up reference angles to find the rest of the answers.
For ${\sin ^{ - 1}}$ function, the principal value branch is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$.
For ${\cos ^{ - 1}}$ function, the principal value branch is $\left[ {0,\pi } \right]$.
For ${\tan ^{ - 1}}$ function, the principal value branch is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$.
Complete step by step solution:
According to definition of inverse ratio,
If$\cos x = - \dfrac{{\sqrt 3 }}{2}$,
Then, ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = x$ where the value of x lies in the range $\left[ {0,\pi } \right]$.
Now, we know that the cosine function is positive in the first and fourth quadrants and negative in the second and third quadrant.
So, the angle $x = {\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ must lie either in second quadrant or in third quadrant.
We know that the value of $\cos \left( {\dfrac{\pi }{6}} \right)$ is $\left( {\dfrac{{\sqrt 3 }}{2}} \right)$. Also, $\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$.
So, $\cos \left( {\pi - \dfrac{\pi }{6}} \right) = - \cos \left( {\dfrac{\pi }{6}} \right)$ .
Therefore, \[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \left( { - \dfrac{{\sqrt 3 }}{2}} \right)\].
Hence, the value of ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ is $\left( {\dfrac{{5\pi }}{6}} \right)$.
Note:The basic inverse trigonometric functions are used to find the missing angles in right triangles. While the regular trigonometric functions are used to determine the missing sides of the right-angled triangles, using the following formulae:
\[\sin \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\cos \theta = \left( {\dfrac{{{\text{Adjacent Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\tan \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]
Besides the trigonometric functions and inverse trigonometric functions, we also have some rules related to trigonometry such as the sine rule and cosine rule. According to the sine rule, the ratio of the sine of two angles is equal to the ratio of the lengths of the sides of the triangle opposite to both the angles. So, $\left( {\dfrac{{\sin A}}{{\sin B}}} \right) = \left( {\dfrac{a}{b}} \right)$.
For ${\sin ^{ - 1}}$ function, the principal value branch is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$.
For ${\cos ^{ - 1}}$ function, the principal value branch is $\left[ {0,\pi } \right]$.
For ${\tan ^{ - 1}}$ function, the principal value branch is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$.
Complete step by step solution:
According to definition of inverse ratio,
If$\cos x = - \dfrac{{\sqrt 3 }}{2}$,
Then, ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = x$ where the value of x lies in the range $\left[ {0,\pi } \right]$.
Now, we know that the cosine function is positive in the first and fourth quadrants and negative in the second and third quadrant.
So, the angle $x = {\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ must lie either in second quadrant or in third quadrant.
We know that the value of $\cos \left( {\dfrac{\pi }{6}} \right)$ is $\left( {\dfrac{{\sqrt 3 }}{2}} \right)$. Also, $\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$.
So, $\cos \left( {\pi - \dfrac{\pi }{6}} \right) = - \cos \left( {\dfrac{\pi }{6}} \right)$ .
Therefore, \[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \left( { - \dfrac{{\sqrt 3 }}{2}} \right)\].
Hence, the value of ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ is $\left( {\dfrac{{5\pi }}{6}} \right)$.
Note:The basic inverse trigonometric functions are used to find the missing angles in right triangles. While the regular trigonometric functions are used to determine the missing sides of the right-angled triangles, using the following formulae:
\[\sin \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\cos \theta = \left( {\dfrac{{{\text{Adjacent Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\tan \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]
Besides the trigonometric functions and inverse trigonometric functions, we also have some rules related to trigonometry such as the sine rule and cosine rule. According to the sine rule, the ratio of the sine of two angles is equal to the ratio of the lengths of the sides of the triangle opposite to both the angles. So, $\left( {\dfrac{{\sin A}}{{\sin B}}} \right) = \left( {\dfrac{a}{b}} \right)$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
