
Evaluate: \[(c + 5)(c - 3)\].
Answer
505.5k+ views
Hint: It is a simple algebraic expression. we can solve this either by directly using the algebraic formula \[(a + b)(a - c) = {a^2} + a(b - c) - bc\] to obtain the final expression or we can simplify the given expression by multiplying the terms to get the required expression.
Complete step by step answer:
Given: \[(c + 5)(c - 3)\]
It can be written as
\[c(c - 3) + 5(c - 3)\]
By further calculation
\[{c^2} - 3c + 5c - 15\]
on simplification
\[{c^2} + 2c - 15\]
Further if you simplify the obtained expression by taking the common factor, we will get back the given expression that the obtained solution is \[{c^2} + 2c - 15\]. Simplifying the above using factorization method we get factors as \[5\] and \[ - 3\] with this above expression can be written as \[{c^2} + 5c - 3c - 15\]. Taking common factor and rearranging
\[c(c + 5) - 3(c + 5)\]
Again, taking common factor we get
\[(c + 5)(c - 3)\]
Note: the given expression is of the form \[(a + b)(a - b)\]so we can directly use the formula
\[(a + b)(a - c) = {a^2} + a(b - c) - bc\]
Where \[a = c,b = 5,c = 3\]
on substitution in the above formula we get,
\[(c + 5)(c - 3) = {c^2} + c(5 - 3) - (5)(3)\]
\[\Rightarrow {c^2} + 5c - 3c - 15\]
\[\Rightarrow c(c + 5) - 3(c + 5)\]
Further if you simplify the obtained expression by taking the common factor, we will get back the given expression that the obtained solution is \[{c^2} + 2c - 15\]. Simplifying the above using factorization method we get factors as \[5\] and \[ - 3\] with this above expression can be written as \[{c^2} + 5c - 3c - 15\]. (taking common factor and rearranging)
\[ c(c + 5) - 3(c + 5)\]
Again, taking common factor we get,
\[(c + 5)(c - 3)\]
The solution is the same in both cases. In the above problem we cannot simplify the equation further to get the value of c because the given expression is not equated to zero. (that is supposed if the given equation is of the form \[(c + 5)(c - 3) = 0\] then we can simplify it by using Factorization method or formula method).
Complete step by step answer:
Given: \[(c + 5)(c - 3)\]
It can be written as
\[c(c - 3) + 5(c - 3)\]
By further calculation
\[{c^2} - 3c + 5c - 15\]
on simplification
\[{c^2} + 2c - 15\]
Further if you simplify the obtained expression by taking the common factor, we will get back the given expression that the obtained solution is \[{c^2} + 2c - 15\]. Simplifying the above using factorization method we get factors as \[5\] and \[ - 3\] with this above expression can be written as \[{c^2} + 5c - 3c - 15\]. Taking common factor and rearranging
\[c(c + 5) - 3(c + 5)\]
Again, taking common factor we get
\[(c + 5)(c - 3)\]
Note: the given expression is of the form \[(a + b)(a - b)\]so we can directly use the formula
\[(a + b)(a - c) = {a^2} + a(b - c) - bc\]
Where \[a = c,b = 5,c = 3\]
on substitution in the above formula we get,
\[(c + 5)(c - 3) = {c^2} + c(5 - 3) - (5)(3)\]
\[\Rightarrow {c^2} + 5c - 3c - 15\]
\[\Rightarrow c(c + 5) - 3(c + 5)\]
Further if you simplify the obtained expression by taking the common factor, we will get back the given expression that the obtained solution is \[{c^2} + 2c - 15\]. Simplifying the above using factorization method we get factors as \[5\] and \[ - 3\] with this above expression can be written as \[{c^2} + 5c - 3c - 15\]. (taking common factor and rearranging)
\[ c(c + 5) - 3(c + 5)\]
Again, taking common factor we get,
\[(c + 5)(c - 3)\]
The solution is the same in both cases. In the above problem we cannot simplify the equation further to get the value of c because the given expression is not equated to zero. (that is supposed if the given equation is of the form \[(c + 5)(c - 3) = 0\] then we can simplify it by using Factorization method or formula method).
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


