
Estimate the cube root of 110592.
A. 48
B. 52
C. 46
D. 54
Answer
552k+ views
Hint: Numbers that are obtained when a number is multiplied by itself three times are known as cube numbers.
If $m={{n}^{3}}$ , then $m$ is the cube of $n$, and $n$ is the cube root of $m$ .
A number whose units digit is 8 has a cube whose units digit is 2.
If a number has $n$ number of zeros at its end then it's cube will have $3n$ number of zeros at its end.
Observe that ${{40}^{3}}=64000$ and ${{50}^{3}}=125000$ .
Complete step-by-step answer:
Since the number 110592 lies between ${{40}^{3}}=64000$ and ${{50}^{3}}=125000$ , its cube root must be between 40 and 50.
Also, the unit digit of 110592 is 2, therefore, the unit digit of its cube root must be 8.
So, the cube root of 110592 will be 48, provided 110592 is a perfect cube.
We check that $48\times 48=2304$ and $2304\times 48=110592$ .
Therefore, the correct answer is A. 48.
Note: Cube numbers are also known as perfect cubes.
Cubes of the numbers with units digit 1, 4, 5, 6 and 9 are the numbers ending in the same units digit.
A number whose units digit is 2 has a cube whose units digit is 8 and vice versa.
A number whose units digit is 3 has a cube whose units digit is 7 and vice versa.
Some other Properties of Cube Numbers:
If a number has n number of zeros at its end then it's cube will have 3n number of zeros at its end.
The cube of an even number is always even and the cube of an odd number is always odd.
When a perfect cube or cube number is prime factorized, its factors can be grouped into triplets; groups of 3 identical primes.
If $m={{n}^{3}}$ , then $m$ is the cube of $n$, and $n$ is the cube root of $m$ .
A number whose units digit is 8 has a cube whose units digit is 2.
If a number has $n$ number of zeros at its end then it's cube will have $3n$ number of zeros at its end.
Observe that ${{40}^{3}}=64000$ and ${{50}^{3}}=125000$ .
Complete step-by-step answer:
Since the number 110592 lies between ${{40}^{3}}=64000$ and ${{50}^{3}}=125000$ , its cube root must be between 40 and 50.
Also, the unit digit of 110592 is 2, therefore, the unit digit of its cube root must be 8.
So, the cube root of 110592 will be 48, provided 110592 is a perfect cube.
We check that $48\times 48=2304$ and $2304\times 48=110592$ .
Therefore, the correct answer is A. 48.
Note: Cube numbers are also known as perfect cubes.
Cubes of the numbers with units digit 1, 4, 5, 6 and 9 are the numbers ending in the same units digit.
A number whose units digit is 2 has a cube whose units digit is 8 and vice versa.
A number whose units digit is 3 has a cube whose units digit is 7 and vice versa.
Some other Properties of Cube Numbers:
If a number has n number of zeros at its end then it's cube will have 3n number of zeros at its end.
The cube of an even number is always even and the cube of an odd number is always odd.
When a perfect cube or cube number is prime factorized, its factors can be grouped into triplets; groups of 3 identical primes.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE


