
Each angle of a Rectangle is a right angle.
State whether the above statement is true or false.
(A) True
(B) False
Answer
496.8k+ views
Hint: In this question we are asked about the property of a rectangle that is if each angle of a rectangle is a right angle or not. For approaching such kinds of questions, we need to first keep in mind the definition and properties of quadrilaterals, which tells us that the sum of all internal angles of a quadrilateral is \[360\] degrees, so we will find the value of each internal angle of the rectangle. And then we will see if each of its angles is right or not.
Complete step by step answer:
We are given a statement that each angle of a rectangle is a right angle, and we are asked if the statement is true or false. So, we know that a rectangle is a quadrilateral in which opposite sides are of equal length, and all the four angles are equal.
Now, let us consider a rectangle \[ABCD\] ,as shown in the figure below.
As per the definition of rectangle, we have \[AB = CD\] and \[AD = BC\]
And \[\angle \left( {ABC} \right) = \angle \left( {BCD} \right) = \angle \left( {CDA} \right) = \angle \left( {DAB} \right)\]
But we know that \[ABCD\] is a quadrilateral and the sum of all interior angles of a quadrilateral is \[360\] degrees. Thus, we have,
\[\angle \left( {ABC} \right) + \angle \left( {BCD} \right) + \angle \left( {CDA} \right) + \angle \left( {DAB} \right) = {360^ \circ }\]
Hence, we can write
\[\angle \left( {ABC} \right) = \angle \left( {BCD} \right) = \angle \left( {CDA} \right) = \angle \left( {DAB} \right) = \dfrac{{{{360}^ \circ }}}{4} = {90^ \circ }\]
Thus, we now know that all four angles of a rectangle are equal to \[{90^ \circ }\] degrees, or a right angle.
Hence, the given statement that each angle of a rectangle is a right angle is true. So, the correct answer is option (A).
Note:
A quadrilateral is a polygon that has four sides. The diagonal of a quadrilateral divides it into two triangles, as we know the sum of all interior angles of a triangle is \[180\] degrees, the sum of all interior angles of a quadrilateral is \[360\] degrees. As the rectangle also has \[4\] sides, it is a type of quadrilateral and thus follows the quadrilateral angle sum property. That’s why the sum of all the angles in a rectangle is equal to \[360\] degrees.
Complete step by step answer:
We are given a statement that each angle of a rectangle is a right angle, and we are asked if the statement is true or false. So, we know that a rectangle is a quadrilateral in which opposite sides are of equal length, and all the four angles are equal.
Now, let us consider a rectangle \[ABCD\] ,as shown in the figure below.
As per the definition of rectangle, we have \[AB = CD\] and \[AD = BC\]
And \[\angle \left( {ABC} \right) = \angle \left( {BCD} \right) = \angle \left( {CDA} \right) = \angle \left( {DAB} \right)\]
But we know that \[ABCD\] is a quadrilateral and the sum of all interior angles of a quadrilateral is \[360\] degrees. Thus, we have,
\[\angle \left( {ABC} \right) + \angle \left( {BCD} \right) + \angle \left( {CDA} \right) + \angle \left( {DAB} \right) = {360^ \circ }\]
Hence, we can write
\[\angle \left( {ABC} \right) = \angle \left( {BCD} \right) = \angle \left( {CDA} \right) = \angle \left( {DAB} \right) = \dfrac{{{{360}^ \circ }}}{4} = {90^ \circ }\]
Thus, we now know that all four angles of a rectangle are equal to \[{90^ \circ }\] degrees, or a right angle.
Hence, the given statement that each angle of a rectangle is a right angle is true. So, the correct answer is option (A).
Note:
A quadrilateral is a polygon that has four sides. The diagonal of a quadrilateral divides it into two triangles, as we know the sum of all interior angles of a triangle is \[180\] degrees, the sum of all interior angles of a quadrilateral is \[360\] degrees. As the rectangle also has \[4\] sides, it is a type of quadrilateral and thus follows the quadrilateral angle sum property. That’s why the sum of all the angles in a rectangle is equal to \[360\] degrees.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Full form of STD, ISD and PCO

What are the 12 elements of nature class 8 chemistry CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Write a short biography of Dr APJ Abdul Kalam under class 8 english CBSE

Compare the manure and fertilizer in maintaining the class 8 biology CBSE

