
What is the domain and range of inverse trigonometric functions?
Answer
514.5k+ views
Hint: The Inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, etc. The inverse trigonometric functions are used to find the angle measure of a right-angled triangle when the measure of two sides of the triangle are known. The conventional symbol used to represent them is ‘arcsin’, ‘arccosine’, ‘arctan’, etc.
Complete step by step answer:
We will now see the domain and range of all the six inverse trigonometric functions in the following order:
(1) ${{\sin }^{-1}}\left( x \right)$
The domain of ${{\sin }^{-1}}\left( x \right)$ is equal to the range of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sin }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\sin }^{-1}}\left( x \right)$ is equal to the domain of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sin }^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
(2) ${{\cos }^{-1}}\left( x \right)$
The domain of ${{\cos }^{-1}}\left( x \right)$ is equal to the range of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cos }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\cos }^{-1}}\left( x \right)$ is equal to the domain of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cos }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]$
(3) ${{\tan }^{-1}}\left( x \right)$
The domain of ${{\tan }^{-1}}\left( x \right)$ is equal to the range of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\tan }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\tan }^{-1}}\left( x \right)$ is equal to the domain of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\tan }^{-1}}\left( x \right) \right]=\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
(4) ${{\cot }^{-1}}\left( x \right)$
The domain of ${{\cot }^{-1}}\left( x \right)$ is equal to the range of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cot }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\cot }^{-1}}\left( x \right)$ is equal to the domain of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cot }^{-1}}\left( x \right) \right]=\left( 0,\pi \right)$
(5) $\cos e{{c}^{-1}}\left( x \right)$
The domain of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the range of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ \cos e{{c}^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the domain of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ \cos e{{c}^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$
(6) ${{\sec }^{-1}}\left( x \right)$
The domain of ${{\sec }^{-1}}\left( x \right)$ is equal to the range of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sec }^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of ${{\sec }^{-1}}\left( x \right)$ is equal to the domain of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sec }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Note: The inverse functions are basically the mirror image of the fundamental functions. That is, they are identical in shape about the line, $y=x$ . This property is used in problems to plot the graph of these inverse trigonometric functions.
Complete step by step answer:
We will now see the domain and range of all the six inverse trigonometric functions in the following order:
(1) ${{\sin }^{-1}}\left( x \right)$
The domain of ${{\sin }^{-1}}\left( x \right)$ is equal to the range of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sin }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\sin }^{-1}}\left( x \right)$ is equal to the domain of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sin }^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
(2) ${{\cos }^{-1}}\left( x \right)$
The domain of ${{\cos }^{-1}}\left( x \right)$ is equal to the range of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cos }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\cos }^{-1}}\left( x \right)$ is equal to the domain of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cos }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]$
(3) ${{\tan }^{-1}}\left( x \right)$
The domain of ${{\tan }^{-1}}\left( x \right)$ is equal to the range of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\tan }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\tan }^{-1}}\left( x \right)$ is equal to the domain of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\tan }^{-1}}\left( x \right) \right]=\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
(4) ${{\cot }^{-1}}\left( x \right)$
The domain of ${{\cot }^{-1}}\left( x \right)$ is equal to the range of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cot }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\cot }^{-1}}\left( x \right)$ is equal to the domain of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cot }^{-1}}\left( x \right) \right]=\left( 0,\pi \right)$
(5) $\cos e{{c}^{-1}}\left( x \right)$
The domain of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the range of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ \cos e{{c}^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the domain of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ \cos e{{c}^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$
(6) ${{\sec }^{-1}}\left( x \right)$
The domain of ${{\sec }^{-1}}\left( x \right)$ is equal to the range of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sec }^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of ${{\sec }^{-1}}\left( x \right)$ is equal to the domain of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sec }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Note: The inverse functions are basically the mirror image of the fundamental functions. That is, they are identical in shape about the line, $y=x$ . This property is used in problems to plot the graph of these inverse trigonometric functions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

