
How does one simplify $\dfrac{{24}}{{\sqrt 3 }}$ ?
Answer
450k+ views
Hint: For solving this particular question , we have to rationalize the given number denominator by respective number, then simplify the expression by using algebraic identities and by performing arithmetic operations such as addition , subtraction , multiplication, and division . We have to convert numbers into its equivalent exponential form where required.
Formula used:In this particular question we used an identity that is ,
${a^m} \times {a^n} = {a^{m + n}}$ , exponent gets added when we have the same base.
Complete step-by-step solution:
We have to simplify the given expression that is $\dfrac{{24}}{{\sqrt 3 }}$. Now, to rationalize the denominator of the given number by multiplying and divide the given number by $\sqrt 3 $ , we have to rationalize the given number denominator by its respective conjugate. The process of multiplying and dividing by the conjugate is a useful technique , this will make the expression simpler.
We will get the following ,
$ \Rightarrow \dfrac{{24}}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }}$
Now by using algebraic identity that is , ${a^m} \times {a^n} = {a^{m + n}}$ , We will get the following ,
$ \Rightarrow \dfrac{{24\sqrt 3 }}{3}$
Simplify the above expression by performing valid arithmetic operation ,
$ \Rightarrow 8\sqrt 3 $
In exact form
$ \Rightarrow 8\sqrt 3 $
In decimal form
$ \Rightarrow 13.85640646$
Here, we get the required answer .
Hence the correct answer is $13.85640646$
Note: While rationalizing the given number denominator , you have to make sure that the resulting product must be the simpler one. Here we have to multiply and divide the number by its respective conjugate and this is a useful technique that comes up in mathematics. We have to be careful while adding the exponents of the numbers having the same base.
Formula used:In this particular question we used an identity that is ,
${a^m} \times {a^n} = {a^{m + n}}$ , exponent gets added when we have the same base.
Complete step-by-step solution:
We have to simplify the given expression that is $\dfrac{{24}}{{\sqrt 3 }}$. Now, to rationalize the denominator of the given number by multiplying and divide the given number by $\sqrt 3 $ , we have to rationalize the given number denominator by its respective conjugate. The process of multiplying and dividing by the conjugate is a useful technique , this will make the expression simpler.
We will get the following ,
$ \Rightarrow \dfrac{{24}}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }}$
Now by using algebraic identity that is , ${a^m} \times {a^n} = {a^{m + n}}$ , We will get the following ,
$ \Rightarrow \dfrac{{24\sqrt 3 }}{3}$
Simplify the above expression by performing valid arithmetic operation ,
$ \Rightarrow 8\sqrt 3 $
In exact form
$ \Rightarrow 8\sqrt 3 $
In decimal form
$ \Rightarrow 13.85640646$
Here, we get the required answer .
Hence the correct answer is $13.85640646$
Note: While rationalizing the given number denominator , you have to make sure that the resulting product must be the simpler one. Here we have to multiply and divide the number by its respective conjugate and this is a useful technique that comes up in mathematics. We have to be careful while adding the exponents of the numbers having the same base.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
