
Divide the polynomial by the given monomial:
i)$\left( 5{{x}^{2}}-6x \right)\div 3x$
ii) $\left( 3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}} \right)\div {{y}^{4}}$
iii) $8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)\div 4{{x}^{2}}{{y}^{2}}{{x}^{2}}$
iv)$\left( {{x}^{3}}+2{{x}^{2}}+3x \right)\div 2x$
v) $\left( {{p}^{3}}{{q}^{6}}-{{p}^{6}}{{q}^{3}} \right)\div {{p}^{3}}{{q}^{3}}$
Answer
601.2k+ views
Hint: First make the expression from $a\div b$ to the form of $\dfrac{a}{b}$ then separate the terms, that is in the form of $\left( \dfrac{a}{c}-\dfrac{b}{c} \right)$. Then cancel the like terms and get the desired result.
Complete step-by-step answer:
Now we can write $a\div b$ as, $\dfrac{a}{b}.$
Now consider first expression,
i)$\left( 5{{x}^{2}}-6x \right)\div 3x$
Then we can write $\left( 5{{x}^{2}}-6x \right)\div 3x$ as, $\dfrac{5{{x}^{2}}-6x}{3x}.$
If $\left( \dfrac{a-b}{c} \right)$ is the form then we can write as $\left( \dfrac{a}{c}-\dfrac{b}{c} \right).$
So, $\left( \dfrac{5{{x}^{2}}-6}{3x} \right)$ can be written as,
$\left( \dfrac{5{{x}^{2}}}{3x}-\dfrac{6x}{3x} \right)$
Cancelling the like terms, the above expression can further simplified as,
$\left( \dfrac{5x}{3}-2 \right)$
Therefore, $\left( 5{{x}^{2}}-6x \right)\div 3x=\left( \dfrac{5x}{3}-2 \right).$
Now consider the second expression,
ii) $\left( 3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}} \right)\div {{y}^{4}}$
As we can write $a\div b$ as $\dfrac{a}{b}.$
So, we can write $\left( 3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}} \right)\div {{y}^{4}}$ as $\dfrac{3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}}}{{{y}^{2}}}.$
If $\left( \dfrac{q-b+c}{d} \right)$ can be written as $\left( \dfrac{a}{d}-\dfrac{b}{d}+\dfrac{c}{d} \right).$
So, $\dfrac{3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}}}{{{y}^{2}}}$ can be written as,
$\left( \dfrac{3{{y}^{8}}}{{{y}^{4}}}-\dfrac{4{{y}^{6}}}{{{y}^{4}}}+\dfrac{5{{y}^{4}}}{{{y}^{4}}} \right)$
Cancelling the like terms, the above expression can be further simplified as,
$\left( 3{{y}^{4}}-4{{y}^{2}}+5 \right)$
Therefore, $\left( 3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}} \right)\div {{y}^{4}}=\left( 3{{y}^{4}}-4{{y}^{2}}+5 \right).$
Now consider the third expression,
iii) $8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)\div 4{{x}^{2}}{{y}^{2}}{{x}^{2}}$
As we can write $a\div b$ as $\dfrac{a}{b}.$
So we can write $8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)\div 4{{x}^{2}}{{y}^{2}}{{x}^{2}}$ as,
$\dfrac{8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}$
If $e\left( \dfrac{a+b+c}{d} \right)$, then it can be written as $\dfrac{ea}{d}+\dfrac{eb}{d}+\dfrac{ec}{d}.$
So, $\dfrac{8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}$ can be written as,
$\dfrac{8{{x}^{3}}{{y}^{2}}{{z}^{2}}}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}+\dfrac{8{{x}^{2}}{{y}^{3}}{{z}^{2}}}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}+\dfrac{8{{x}^{2}}{{y}^{2}}{{z}^{3}}}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}$
Cancelling the like terms, the above expression can be simplified as,
(2x + 2y + 2z)
Therefore, $8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)\div 4{{x}^{2}}{{y}^{2}}{{x}^{2}}=2\left( x+y+z \right)$.
Now consider the fourth expression,
iv)$\left( {{x}^{3}}+2{{x}^{2}}+3x \right)\div 2x$
As we can write $a\div b$ as $\dfrac{a}{b}.$
So, we can write $\left( {{x}^{3}}+2{{x}^{2}}+3x \right)\div 2x$ as,
$\dfrac{{{x}^{3}}+2{{x}^{2}}+3x}{2x}$
If $\left( \dfrac{a+b+c}{d} \right)$, then it can be written as $\dfrac{a}{b}+\dfrac{b}{d}+\dfrac{c}{d}.$
So, $\left( \dfrac{{{x}^{3}}+2{{x}^{2}}+3x}{2x} \right)$ can be written as,
$\dfrac{{{x}^{3}}}{2x}+\dfrac{2{{x}^{2}}}{2x}+\dfrac{3x}{2x}$
Cancelling the like terms, the above expression can be simplified as,
$\left( \dfrac{{{x}^{2}}}{2}+x+\dfrac{3}{2} \right)$
Therefore, \[\left( {{x}^{3}}+2{{x}^{2}}+3x \right)\div 2x=\dfrac{{{x}^{2}}}{2}+x+\dfrac{3}{4}.\]
Now consider the last expression,
v) $\left( {{p}^{3}}{{q}^{6}}-{{p}^{6}}{{q}^{3}} \right)\div {{p}^{3}}{{q}^{3}}$
As we can write $a\div b$ as $\dfrac{a}{b}.$
If $\left( \dfrac{a-b}{c} \right)$, then it can be written as $\left( \dfrac{a}{c}-\dfrac{b}{c} \right).$
Then we can write $\dfrac{{{p}^{3}}{{q}^{6}}-{{p}^{6}}{{q}^{3}}}{{{p}^{3}}{{q}^{3}}}$ as,
\[\left( \dfrac{{{p}^{3}}{{q}^{6}}}{{{p}^{3}}{{q}^{3}}}-\dfrac{{{p}^{6}}{{q}^{3}}}{{{p}^{3}}{{q}^{3}}} \right)\]
Cancelling the like terms, the above expression can be written as,
${{q}^{2}}-{{p}^{3}}$
Therefore, $\left( {{p}^{3}}{{q}^{6}}-{{p}^{6}}{{q}^{3}} \right)\div {{p}^{3}}{{q}^{3}}={{q}^{2}}-{{p}^{3}}$
Note: Students must be careful while dividing separately and cancelling the common power between numerator and denominator. They should also do calculations carefully to avoid any mistakes. Another approach is to use a long division method of polynomials.
Complete step-by-step answer:
Now we can write $a\div b$ as, $\dfrac{a}{b}.$
Now consider first expression,
i)$\left( 5{{x}^{2}}-6x \right)\div 3x$
Then we can write $\left( 5{{x}^{2}}-6x \right)\div 3x$ as, $\dfrac{5{{x}^{2}}-6x}{3x}.$
If $\left( \dfrac{a-b}{c} \right)$ is the form then we can write as $\left( \dfrac{a}{c}-\dfrac{b}{c} \right).$
So, $\left( \dfrac{5{{x}^{2}}-6}{3x} \right)$ can be written as,
$\left( \dfrac{5{{x}^{2}}}{3x}-\dfrac{6x}{3x} \right)$
Cancelling the like terms, the above expression can further simplified as,
$\left( \dfrac{5x}{3}-2 \right)$
Therefore, $\left( 5{{x}^{2}}-6x \right)\div 3x=\left( \dfrac{5x}{3}-2 \right).$
Now consider the second expression,
ii) $\left( 3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}} \right)\div {{y}^{4}}$
As we can write $a\div b$ as $\dfrac{a}{b}.$
So, we can write $\left( 3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}} \right)\div {{y}^{4}}$ as $\dfrac{3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}}}{{{y}^{2}}}.$
If $\left( \dfrac{q-b+c}{d} \right)$ can be written as $\left( \dfrac{a}{d}-\dfrac{b}{d}+\dfrac{c}{d} \right).$
So, $\dfrac{3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}}}{{{y}^{2}}}$ can be written as,
$\left( \dfrac{3{{y}^{8}}}{{{y}^{4}}}-\dfrac{4{{y}^{6}}}{{{y}^{4}}}+\dfrac{5{{y}^{4}}}{{{y}^{4}}} \right)$
Cancelling the like terms, the above expression can be further simplified as,
$\left( 3{{y}^{4}}-4{{y}^{2}}+5 \right)$
Therefore, $\left( 3{{y}^{8}}-4{{y}^{6}}+5{{y}^{4}} \right)\div {{y}^{4}}=\left( 3{{y}^{4}}-4{{y}^{2}}+5 \right).$
Now consider the third expression,
iii) $8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)\div 4{{x}^{2}}{{y}^{2}}{{x}^{2}}$
As we can write $a\div b$ as $\dfrac{a}{b}.$
So we can write $8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)\div 4{{x}^{2}}{{y}^{2}}{{x}^{2}}$ as,
$\dfrac{8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}$
If $e\left( \dfrac{a+b+c}{d} \right)$, then it can be written as $\dfrac{ea}{d}+\dfrac{eb}{d}+\dfrac{ec}{d}.$
So, $\dfrac{8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}$ can be written as,
$\dfrac{8{{x}^{3}}{{y}^{2}}{{z}^{2}}}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}+\dfrac{8{{x}^{2}}{{y}^{3}}{{z}^{2}}}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}+\dfrac{8{{x}^{2}}{{y}^{2}}{{z}^{3}}}{4{{x}^{2}}{{y}^{2}}{{x}^{2}}}$
Cancelling the like terms, the above expression can be simplified as,
(2x + 2y + 2z)
Therefore, $8\left( {{x}^{3}}{{y}^{2}}{{z}^{2}}+{{x}^{2}}{{y}^{3}}{{z}^{2}}+{{x}^{2}}{{y}^{2}}{{z}^{3}} \right)\div 4{{x}^{2}}{{y}^{2}}{{x}^{2}}=2\left( x+y+z \right)$.
Now consider the fourth expression,
iv)$\left( {{x}^{3}}+2{{x}^{2}}+3x \right)\div 2x$
As we can write $a\div b$ as $\dfrac{a}{b}.$
So, we can write $\left( {{x}^{3}}+2{{x}^{2}}+3x \right)\div 2x$ as,
$\dfrac{{{x}^{3}}+2{{x}^{2}}+3x}{2x}$
If $\left( \dfrac{a+b+c}{d} \right)$, then it can be written as $\dfrac{a}{b}+\dfrac{b}{d}+\dfrac{c}{d}.$
So, $\left( \dfrac{{{x}^{3}}+2{{x}^{2}}+3x}{2x} \right)$ can be written as,
$\dfrac{{{x}^{3}}}{2x}+\dfrac{2{{x}^{2}}}{2x}+\dfrac{3x}{2x}$
Cancelling the like terms, the above expression can be simplified as,
$\left( \dfrac{{{x}^{2}}}{2}+x+\dfrac{3}{2} \right)$
Therefore, \[\left( {{x}^{3}}+2{{x}^{2}}+3x \right)\div 2x=\dfrac{{{x}^{2}}}{2}+x+\dfrac{3}{4}.\]
Now consider the last expression,
v) $\left( {{p}^{3}}{{q}^{6}}-{{p}^{6}}{{q}^{3}} \right)\div {{p}^{3}}{{q}^{3}}$
As we can write $a\div b$ as $\dfrac{a}{b}.$
If $\left( \dfrac{a-b}{c} \right)$, then it can be written as $\left( \dfrac{a}{c}-\dfrac{b}{c} \right).$
Then we can write $\dfrac{{{p}^{3}}{{q}^{6}}-{{p}^{6}}{{q}^{3}}}{{{p}^{3}}{{q}^{3}}}$ as,
\[\left( \dfrac{{{p}^{3}}{{q}^{6}}}{{{p}^{3}}{{q}^{3}}}-\dfrac{{{p}^{6}}{{q}^{3}}}{{{p}^{3}}{{q}^{3}}} \right)\]
Cancelling the like terms, the above expression can be written as,
${{q}^{2}}-{{p}^{3}}$
Therefore, $\left( {{p}^{3}}{{q}^{6}}-{{p}^{6}}{{q}^{3}} \right)\div {{p}^{3}}{{q}^{3}}={{q}^{2}}-{{p}^{3}}$
Note: Students must be careful while dividing separately and cancelling the common power between numerator and denominator. They should also do calculations carefully to avoid any mistakes. Another approach is to use a long division method of polynomials.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Who wrote the novel "Crime and Punishment"?

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


