
How do you divide $\dfrac{4i+4}{6i+5}$ in trigonometric form?
Answer
450.9k+ views
Hint: To solve the given question first we will multiply the numerator and denominator of the given expression by complex conjugate of the denominator. Then we will find the modulus and the argument of obtained complex number. Then we will express the obtained complex number in polar form. The polar form or trigonometric form of complex number is given as
$z=x+iy=r\left( \cos \theta +i\sin \theta \right)$
Where, $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ and $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$
Complete step-by-step answer:
We have been given an expression $\dfrac{4i+4}{6i+5}$.
We have to divide the given expression in trigonometric form.
First let us multiply the numerator and denominator of given expression by complex conjugate of denominator. Then we will get
$\Rightarrow \dfrac{4i+4}{6i+5}\times \dfrac{6i-5}{6i-5}$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \dfrac{\left( 4i+4 \right)\left( 6i-5 \right)}{{{\left( 6i \right)}^{2}}-{{5}^{2}}} \\
& \Rightarrow \dfrac{24{{i}^{2}}-20+24i-20i}{36{{i}^{2}}-25} \\
\end{align}\]
Now, we know that ${{i}^{2}}=-1$
Now, substituting the values we will get
\[\Rightarrow \dfrac{24\left( -1 \right)-20+24i-20i}{36\left( -1 \right)-25}\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \dfrac{-24-20+24i-20i}{-36-25} \\
& \Rightarrow \dfrac{-44+4i}{-61} \\
\end{align}\]
Now, we can write the above obtained equation as
$\begin{align}
& \Rightarrow \dfrac{-44}{-61}+\dfrac{4i}{-61} \\
& \Rightarrow \dfrac{44}{61}-\dfrac{4i}{61} \\
\end{align}$
Now, we know that the modulus of complex number is given by
$\left| z \right|=\sqrt{{{\left( \dfrac{44}{61} \right)}^{2}}+{{\left( \dfrac{4}{61} \right)}^{2}}}$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow \left| z \right|=\sqrt{\dfrac{1936}{{{\left( 61 \right)}^{2}}}+\dfrac{16}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{1936+16}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{1952}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{16 \times 122}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\dfrac{4\sqrt{122}}{61} \\
\end{align}$
Therefore \[\Rightarrow r=\dfrac{4\sqrt{122}}{61}\]
Now, we know that $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$
Substituting the values we will get
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\dfrac{-4}{61}}{\dfrac{44}{61}} \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{-4}{44} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{-1}{11} \right) \\
& \Rightarrow \theta =0.09 \\
\end{align}$
Now, the trigonometric representation of given complex number will be
$\Rightarrow z=r\left( \cos \theta +i\sin \theta \right)$
Now, substituting the values we will get
$\Rightarrow z=\dfrac{4\sqrt{122}}{61}\left( \cos 0.09-i\sin 0.09 \right)$
Hence above is the required trigonometric form.
Note: As the solution is lengthy please avoid calculation mistakes. To solve such type of questions students must know the trigonometric form or polar representation of complex numbers. The point to be noted is that the value of modulus is always positive.
$z=x+iy=r\left( \cos \theta +i\sin \theta \right)$
Where, $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ and $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$
Complete step-by-step answer:
We have been given an expression $\dfrac{4i+4}{6i+5}$.
We have to divide the given expression in trigonometric form.
First let us multiply the numerator and denominator of given expression by complex conjugate of denominator. Then we will get
$\Rightarrow \dfrac{4i+4}{6i+5}\times \dfrac{6i-5}{6i-5}$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \dfrac{\left( 4i+4 \right)\left( 6i-5 \right)}{{{\left( 6i \right)}^{2}}-{{5}^{2}}} \\
& \Rightarrow \dfrac{24{{i}^{2}}-20+24i-20i}{36{{i}^{2}}-25} \\
\end{align}\]
Now, we know that ${{i}^{2}}=-1$
Now, substituting the values we will get
\[\Rightarrow \dfrac{24\left( -1 \right)-20+24i-20i}{36\left( -1 \right)-25}\]
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow \dfrac{-24-20+24i-20i}{-36-25} \\
& \Rightarrow \dfrac{-44+4i}{-61} \\
\end{align}\]
Now, we can write the above obtained equation as
$\begin{align}
& \Rightarrow \dfrac{-44}{-61}+\dfrac{4i}{-61} \\
& \Rightarrow \dfrac{44}{61}-\dfrac{4i}{61} \\
\end{align}$
Now, we know that the modulus of complex number is given by
$\left| z \right|=\sqrt{{{\left( \dfrac{44}{61} \right)}^{2}}+{{\left( \dfrac{4}{61} \right)}^{2}}}$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow \left| z \right|=\sqrt{\dfrac{1936}{{{\left( 61 \right)}^{2}}}+\dfrac{16}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{1936+16}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{1952}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\sqrt{\dfrac{16 \times 122}{{{\left( 61 \right)}^{2}}}} \\
& \Rightarrow \left| z \right|=\dfrac{4\sqrt{122}}{61} \\
\end{align}$
Therefore \[\Rightarrow r=\dfrac{4\sqrt{122}}{61}\]
Now, we know that $\theta ={{\tan }^{-1}}\left( \dfrac{y}{x} \right)$
Substituting the values we will get
$\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{\dfrac{-4}{61}}{\dfrac{44}{61}} \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{-4}{44} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{-1}{11} \right) \\
& \Rightarrow \theta =0.09 \\
\end{align}$
Now, the trigonometric representation of given complex number will be
$\Rightarrow z=r\left( \cos \theta +i\sin \theta \right)$
Now, substituting the values we will get
$\Rightarrow z=\dfrac{4\sqrt{122}}{61}\left( \cos 0.09-i\sin 0.09 \right)$
Hence above is the required trigonometric form.
Note: As the solution is lengthy please avoid calculation mistakes. To solve such type of questions students must know the trigonometric form or polar representation of complex numbers. The point to be noted is that the value of modulus is always positive.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
