
How do you differentiate $y= \text{arcsec} \left( \dfrac{1}{x} \right)$?
Answer
541.5k+ views
Hint: We explain the function $ \text{arcsec} \left( x \right)$. We express the inverse ratio of sec in the form of $\text{arcsec} \left( x \right)={{\sec }^{-1}}x$. We then define the chain rule and how the differentiation of composite function works. We take differentiation of the main function with respect to the intermediate function and then take differentiation of the intermediate function with respect to $x$. We take multiplication of these two different differentiated values.
Complete step-by-step solution:
The given expression is the inverse function of trigonometric ratio tan.
So, $\text{arcsec} \left( x \right)={{\sec }^{-1}}x$. If $ \text{arcsec} \left( x \right)=\alpha $ then we can say $\sec \alpha =x$.
We differentiate the given function $y= \text{arcsec} \left( \dfrac{1}{x} \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{\sec }^{-1}}x$ and the other function is $h\left( x \right)=\left( \dfrac{1}{x} \right)$.
We have $goh\left( x \right)=g\left( \dfrac{1}{x} \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$. We take this as ours $f\left( x \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\sec }^{-1}}\left( \dfrac{1}{x} \right) \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$, we take differentiation of $f\left( x \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$ with respect to the function $h\left( x \right)=\left( \dfrac{1}{x} \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=\left( \dfrac{1}{x} \right)$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{\sec }^{-1}}x$ is ${{g}^{'}}\left( x \right)=\dfrac{1}{x\sqrt{{{x}^{2}}-1}}$ and differentiation of $h\left( x \right)=\left( \dfrac{1}{x} \right)$ is \[{{h}^{'}}\left( x \right)=\dfrac{-1}{{{x}^{2}}}\]. We apply the formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \dfrac{1}{x} \right]}\left[ {{\sec }^{-1}}\left( \dfrac{1}{x} \right) \right]\times \dfrac{d\left[ \dfrac{1}{x} \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{1}{\left( \dfrac{1}{x} \right)\sqrt{{{\left( \dfrac{1}{x} \right)}^{2}}-1}}\left[ \dfrac{-1}{{{x}^{2}}} \right]=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
Therefore, differentiation of ${{\sec }^{-1}}\left( \dfrac{1}{x} \right)$ is \[\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\].
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step-by-step solution:
The given expression is the inverse function of trigonometric ratio tan.
So, $\text{arcsec} \left( x \right)={{\sec }^{-1}}x$. If $ \text{arcsec} \left( x \right)=\alpha $ then we can say $\sec \alpha =x$.
We differentiate the given function $y= \text{arcsec} \left( \dfrac{1}{x} \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{\sec }^{-1}}x$ and the other function is $h\left( x \right)=\left( \dfrac{1}{x} \right)$.
We have $goh\left( x \right)=g\left( \dfrac{1}{x} \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$. We take this as ours $f\left( x \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\sec }^{-1}}\left( \dfrac{1}{x} \right) \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$, we take differentiation of $f\left( x \right)={{\sec }^{-1}}\left( \dfrac{1}{x} \right)$ with respect to the function $h\left( x \right)=\left( \dfrac{1}{x} \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)=\left( \dfrac{1}{x} \right)$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{\sec }^{-1}}x$ is ${{g}^{'}}\left( x \right)=\dfrac{1}{x\sqrt{{{x}^{2}}-1}}$ and differentiation of $h\left( x \right)=\left( \dfrac{1}{x} \right)$ is \[{{h}^{'}}\left( x \right)=\dfrac{-1}{{{x}^{2}}}\]. We apply the formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ \dfrac{1}{x} \right]}\left[ {{\sec }^{-1}}\left( \dfrac{1}{x} \right) \right]\times \dfrac{d\left[ \dfrac{1}{x} \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{1}{\left( \dfrac{1}{x} \right)\sqrt{{{\left( \dfrac{1}{x} \right)}^{2}}-1}}\left[ \dfrac{-1}{{{x}^{2}}} \right]=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
Therefore, differentiation of ${{\sec }^{-1}}\left( \dfrac{1}{x} \right)$ is \[\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\].
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

