
Differentiate with respect to x.
\[y = \dfrac{1}{{\sin x}} + {e^x} + 2\]
Answer
574.2k+ views
Hint: For this type of problem having different functions. We first write them as in addition or subtraction if possible and then apply respective formulas of differentiation on each to get the required solution.
Quotient rule of differentiation: $ \dfrac{d}{{dx}}\left( {\dfrac{A}{B}} \right) = \dfrac{{B.\dfrac{d}{{dx}}(A) - A\dfrac{d}{{dx}}(B)}}{{{B^2}}} $ , $ \dfrac{d}{{dx}}(\sin x) = \cos x,\,\,\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\,\,and\,\,\dfrac{d}{{dx}}\left( {\operatorname{co} ns\tan t} \right) = 0 $
Complete step by step solution:
\[y = \dfrac{1}{{\sin x}} + {e^x} + 2\]
Differentiating above with respect to x
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{\sin x}} + {e^x} + 2} \right)\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{\sin x}}} \right) + \dfrac{d}{{dx}}\left( {{e^x}} \right) + \dfrac{d}{{dx}}\left( 2 \right) $
Applying, quotient rule on first term of right hand side of the above equation to find differentiation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin x\dfrac{d}{{dx}}(1) - 1\dfrac{d}{{dx}}(\sin x)}}{{{{\sin }^2}x}} + \dfrac{d}{{dx}}\left( {{e^x}} \right) + \dfrac{d}{{dx}}(2) $
$
\dfrac{{dy}}{{dx}} = \dfrac{{\sin x(0) - \cos x}}{{{{\sin }^2}x}} + {e^x} + 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\cos x}}{{{{\sin }^2}x}} + {e^x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{\sin x}}.\dfrac{{\cos x}}{{\sin x}} + {e^x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \cos ecx.\cot x + {e^x} \\
$
Hence, from above we see that differentiation of $ y = \dfrac{1}{{\sin x}} + {e^x} + 2 $ w.r.t. x is $ - \cos ecx.\cot x + {e^x} $ .
So, the correct answer is “$ - \cos ecx.\cot x + {e^x} $”.
Note: For a given problem we can also find its answer in another way. In this we first write $ \dfrac{1}{{\sin x}} $ as $ \cos ecx $ and then the right hand side of the given problem becomes the sum of three independent functions. After differentiating them individually we can find the derivative of the given problem.
Quotient rule of differentiation: $ \dfrac{d}{{dx}}\left( {\dfrac{A}{B}} \right) = \dfrac{{B.\dfrac{d}{{dx}}(A) - A\dfrac{d}{{dx}}(B)}}{{{B^2}}} $ , $ \dfrac{d}{{dx}}(\sin x) = \cos x,\,\,\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\,\,and\,\,\dfrac{d}{{dx}}\left( {\operatorname{co} ns\tan t} \right) = 0 $
Complete step by step solution:
\[y = \dfrac{1}{{\sin x}} + {e^x} + 2\]
Differentiating above with respect to x
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{\sin x}} + {e^x} + 2} \right)\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{\sin x}}} \right) + \dfrac{d}{{dx}}\left( {{e^x}} \right) + \dfrac{d}{{dx}}\left( 2 \right) $
Applying, quotient rule on first term of right hand side of the above equation to find differentiation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin x\dfrac{d}{{dx}}(1) - 1\dfrac{d}{{dx}}(\sin x)}}{{{{\sin }^2}x}} + \dfrac{d}{{dx}}\left( {{e^x}} \right) + \dfrac{d}{{dx}}(2) $
$
\dfrac{{dy}}{{dx}} = \dfrac{{\sin x(0) - \cos x}}{{{{\sin }^2}x}} + {e^x} + 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\cos x}}{{{{\sin }^2}x}} + {e^x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{\sin x}}.\dfrac{{\cos x}}{{\sin x}} + {e^x} \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \cos ecx.\cot x + {e^x} \\
$
Hence, from above we see that differentiation of $ y = \dfrac{1}{{\sin x}} + {e^x} + 2 $ w.r.t. x is $ - \cos ecx.\cot x + {e^x} $ .
So, the correct answer is “$ - \cos ecx.\cot x + {e^x} $”.
Note: For a given problem we can also find its answer in another way. In this we first write $ \dfrac{1}{{\sin x}} $ as $ \cos ecx $ and then the right hand side of the given problem becomes the sum of three independent functions. After differentiating them individually we can find the derivative of the given problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

