
Differentiate the given trigonometric expression.
$\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}$
Answer
604.2k+ views
Hint: To solve the above question, we will have to use the product rules and quotient rules of differentiation. According to product rule of differentiation, we have:
$\dfrac{d}{{dx}}\left( {f\left( x \right).g\left( x \right)} \right) = g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] + f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]$
The quotient rule of differentiation says that:
$\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] - f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]}}{{{{\left( {g\left( x \right)} \right)}^2}}}$
Complete step-by-step solution -
The function given in question for which we have to find derivative is in the form of $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ where $f\left( x \right) = \sin x - x\cos x$ and $g\left( x \right) = xsinx + \cos x$. To differentiate a function of the form $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$, we will use quotient rule of differentiation says that the derivative of the function $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ is calculated as shown below:
$\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] - f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]}}{{{{\left( {g\left( x \right)} \right)}^2}}}$
In our question, we have to find the differentiation of $\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}$. In our case, $f\left( x \right) = \sin x - x\cos x$and $g\left( x \right) = x\sin x + \cos x$. Therefore, after applying quotient rule of differentiation, we get:
$\dfrac{d}{{dx}}\left( {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right) = \dfrac{{\left( {x\sin x + \cos x} \right)\dfrac{d}{{dx}}\left[ {\sin x - x\cos x} \right] - \left( {\sin x - x\cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right)} \right]}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}$…………………....(i)
Let $sinx - x\cos x = P$ and $x\sin x + \cos x = q$. Now first we will find the derivative of P with respect to x. Now according to sum rule of differentiation, we have,
\[\dfrac{{dP}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = \dfrac{d}{{dx}}\left( {\sin x} \right) - \dfrac{d}{{dx}}\left( {x\cos x} \right)\] …………….……(ii)
Now, we know that \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]. We will calculate the value of \[\dfrac{d}{{dx}}\left( {x\cos x} \right)\] with the help of quotient rule:
$\dfrac{d}{{dx}}\left( {f\left( x \right).g\left( x \right)} \right) = g\left( x \right).\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right).\dfrac{d}{{dx}}g\left( x \right)$
In our case, $f\left( x \right) = x$ and $g\left( x \right) = \cos x$. So we have:
\[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x.\dfrac{d}{{dx}}\left( x \right) + x.\dfrac{d}{{dx}}\left( {\cos x} \right)\]
Now, because \[\dfrac{{dx}}{{dx}} = 1\,\] and \[\dfrac{d}{{dx}}\cos x = - \sin x\]
\[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x.1 + x\left( { - \sin x} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\]
Now we will put the respective values into (ii). After doing this:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = \cos x - \left( {\cos x - x\sin x} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = x\sin x\] ……….……(iii)
Now ,we will find the derivative of q with respect to x.
According to sum rule, we have:
\[\dfrac{{dq}}{{dx}} = \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = \dfrac{d}{{dx}}\left( {x\sin x} \right) + \dfrac{d}{{dx}}\cos x\] ……………….……(iv)
Know we know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. The derivative of $x\sin x$can be calculated with the help of quotient rule:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x.\dfrac{d}{{dx}}\left( x \right) + x.\dfrac{d}{{dx}}\left( {\sin x} \right)\]
Now, because \[\dfrac{{dx}}{{dx}} = 1\,\] and \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x.1 + x.\cos x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x + x\cos x\]
Now, we will put the respective values into (iv)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = \sin x + x\cos x - \sin x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = x\cos x\] ……...……(v)
Now, we will put the values of derivatives from (iii) and (v) into (i)
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right] = \dfrac{{\left( {x\sin x + \cos x} \right)\left( {x\sin x} \right) - \left( {\sin x - x\cos x} \right)\left( {x\cos x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}{{\sin }^2}x + x\cos x\sin x - x\cos x\sin x + {x^2}{{\cos }^2}x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}\left( {{{\sin }^2} + {{\cos }^2}x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right) = {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)^2}\]
Note: Here we need to keep in mind that the derivative which we have found above is not valid when the denominator is zero. Thus when $x\sin x + \cos x = 0$ the differentiation does not exist.
$\dfrac{d}{{dx}}\left( {f\left( x \right).g\left( x \right)} \right) = g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] + f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]$
The quotient rule of differentiation says that:
$\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] - f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]}}{{{{\left( {g\left( x \right)} \right)}^2}}}$
Complete step-by-step solution -
The function given in question for which we have to find derivative is in the form of $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ where $f\left( x \right) = \sin x - x\cos x$ and $g\left( x \right) = xsinx + \cos x$. To differentiate a function of the form $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$, we will use quotient rule of differentiation says that the derivative of the function $\dfrac{{f\left( x \right)}}{{g\left( x \right)}}$ is calculated as shown below:
$\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\left[ {\dfrac{d}{{dx}}f\left( x \right)} \right] - f\left( x \right)\left[ {\dfrac{d}{{dx}}g\left( x \right)} \right]}}{{{{\left( {g\left( x \right)} \right)}^2}}}$
In our question, we have to find the differentiation of $\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}$. In our case, $f\left( x \right) = \sin x - x\cos x$and $g\left( x \right) = x\sin x + \cos x$. Therefore, after applying quotient rule of differentiation, we get:
$\dfrac{d}{{dx}}\left( {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right) = \dfrac{{\left( {x\sin x + \cos x} \right)\dfrac{d}{{dx}}\left[ {\sin x - x\cos x} \right] - \left( {\sin x - x\cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right)} \right]}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}$…………………....(i)
Let $sinx - x\cos x = P$ and $x\sin x + \cos x = q$. Now first we will find the derivative of P with respect to x. Now according to sum rule of differentiation, we have,
\[\dfrac{{dP}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = \dfrac{d}{{dx}}\left( {\sin x} \right) - \dfrac{d}{{dx}}\left( {x\cos x} \right)\] …………….……(ii)
Now, we know that \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]. We will calculate the value of \[\dfrac{d}{{dx}}\left( {x\cos x} \right)\] with the help of quotient rule:
$\dfrac{d}{{dx}}\left( {f\left( x \right).g\left( x \right)} \right) = g\left( x \right).\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right).\dfrac{d}{{dx}}g\left( x \right)$
In our case, $f\left( x \right) = x$ and $g\left( x \right) = \cos x$. So we have:
\[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x.\dfrac{d}{{dx}}\left( x \right) + x.\dfrac{d}{{dx}}\left( {\cos x} \right)\]
Now, because \[\dfrac{{dx}}{{dx}} = 1\,\] and \[\dfrac{d}{{dx}}\cos x = - \sin x\]
\[\dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x.1 + x\left( { - \sin x} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\cos x} \right) = \cos x - x\sin x\]
Now we will put the respective values into (ii). After doing this:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = \cos x - \left( {\cos x - x\sin x} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - x\cos x} \right) = x\sin x\] ……….……(iii)
Now ,we will find the derivative of q with respect to x.
According to sum rule, we have:
\[\dfrac{{dq}}{{dx}} = \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = \dfrac{d}{{dx}}\left( {x\sin x} \right) + \dfrac{d}{{dx}}\cos x\] ……………….……(iv)
Know we know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. The derivative of $x\sin x$can be calculated with the help of quotient rule:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x.\dfrac{d}{{dx}}\left( x \right) + x.\dfrac{d}{{dx}}\left( {\sin x} \right)\]
Now, because \[\dfrac{{dx}}{{dx}} = 1\,\] and \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x.1 + x.\cos x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x} \right) = \sin x + x\cos x\]
Now, we will put the respective values into (iv)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = \sin x + x\cos x - \sin x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sin x + \cos x} \right) = x\cos x\] ……...……(v)
Now, we will put the values of derivatives from (iii) and (v) into (i)
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right] = \dfrac{{\left( {x\sin x + \cos x} \right)\left( {x\sin x} \right) - \left( {\sin x - x\cos x} \right)\left( {x\cos x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}{{\sin }^2}x + x\cos x\sin x - x\cos x\sin x + {x^2}{{\cos }^2}x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}\left( {{{\sin }^2} + {{\cos }^2}x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{P}{q}} \right) = \dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{\sin x - x\cos x}}{{x\sin x + \cos x}}} \right) = {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)^2}\]
Note: Here we need to keep in mind that the derivative which we have found above is not valid when the denominator is zero. Thus when $x\sin x + \cos x = 0$ the differentiation does not exist.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

