
Differentiate the given function w.r.t x, ${{x}^{x}}+{{x}^{a}}+{{a}^{x}}+{{a}^{a}}$ for some fixed a>0 and x>0.
Answer
576k+ views
Hint: In this question, we are given a function and we have to differentiate it. For this, we will use various properties of differentiation given as,
(1) The derivative of a sum of functions is equal to the sum of the derivative of functions.
(2) The derivative of a constant is equal to zero.
(3) Product rule of two functions $\dfrac{d}{dx}\left( u\cdot v \right)$ is given as $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$.
(4) Chain rule of $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)$ is given as $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\cdot g'\left( x \right)\cdot \dfrac{du}{dx}$.
(5) $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$.
(6) $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$.
Also we will use logarithm properties given as $\log {{a}^{b}}=b\log a$.
Complete step by step answer:
Here, we are given function as ${{x}^{x}}+{{x}^{a}}+{{a}^{x}}+{{a}^{a}}$ where a>0 and x>0.
Let the given function be equal to y. So, $y={{x}^{x}}+{{x}^{a}}+{{a}^{x}}+{{a}^{a}}$.
Let us suppose that ${{x}^{x}}=u,{{x}^{a}}=v,{{a}^{x}}=w\text{ and }{{a}^{a}}=s$.
Therefore, y = u+v+w+s differentiating y w.r.t x, we get:
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( u+v+w+s \right)\]
As we know, the derivative of the sum of a function is equal to the sum of the derivative of the function. Therefore,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}+\dfrac{dw}{dx}+\dfrac{ds}{dx}\cdots \cdots \cdots \left( 1 \right)\]
Now, we need to find values of $\dfrac{du}{dx},\dfrac{dv}{dx},\dfrac{dw}{dx},\dfrac{ds}{dx}$.
Now, $u={{x}^{x}}$ taking log on both sides, we get:
\[\Rightarrow \log u=\log {{x}^{x}}\]
As we know, $\log {{a}^{b}}=b\log a$ so we get:
\[\Rightarrow \log u=x\log x\]
Differentiating both sides w.r.t x, we get:
\[\Rightarrow \dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( x\log x \right)\]
We know $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\text{ and }\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\cdot \dfrac{d}{dx}g\left( x \right)$ and product rule is given by $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$. Using these properties we get:
\[\begin{align}
& \dfrac{1}{u}\cdot \dfrac{du}{dx}=x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( x \right) \\
& \Rightarrow \dfrac{1}{u}\cdot \dfrac{du}{dx}=x\cdot \dfrac{1}{x}+\log x\cdot \left( 1 \right) \\
& \Rightarrow \dfrac{1}{u}\cdot \dfrac{du}{dx}=1+\log x \\
\end{align}\]
Taking u on other side, we get:
\[\Rightarrow \dfrac{du}{dx}=u\left( 1+\log x \right)\]
Since $u={{x}^{x}}$ we get:
\[\Rightarrow \dfrac{du}{dx}={{x}^{x}}\left( 1+\log x \right)\cdots \cdots \cdots \left( 2 \right)\]
$v={{x}^{a}}$.
Differentiating both sides w.r.t x, we get:
\[\Rightarrow \dfrac{dv}{dx}=\dfrac{d}{dx}\left( {{x}^{a}} \right)\]
As we know, $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ so we get:
\[\Rightarrow \dfrac{dv}{dx}=a{{x}^{a-1}}\cdots \cdots \cdots \left( 3 \right)\]
$w={{a}^{x}}$.
Taking log on both sides, we get:
\[\Rightarrow \log w=\log {{a}^{x}}\]
Since $\log {{a}^{b}}=b\log a$ we get:
\[\Rightarrow \log w=x\log a\]
Differentiating both sides w.r.t x, we get:
\[\Rightarrow \dfrac{1}{w}\cdot \dfrac{dw}{dx}=x\dfrac{d\log a}{dx}+\log a\dfrac{dx}{dx}\]
As we know, differentiation of constant term is zero, therefore we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{w}\cdot \dfrac{dw}{dx}=x\cdot 0+\log a\left( 1 \right) \\
& \Rightarrow \dfrac{1}{w}\cdot \dfrac{dw}{dx}=\log a \\
\end{align}\]
Taking w on other side, we get:
\[\Rightarrow \dfrac{dw}{dx}=w\log a\]
Since $w={{a}^{x}}$ therefore,
\[\Rightarrow \dfrac{dw}{dx}={{a}^{x}}\log a\cdots \cdots \cdots \left( 4 \right)\]
$s={{a}^{a}}$.
Since 'a' is constant, therefore ${{a}^{a}}$ is also constant and derivatives of constant term is zero. Therefore, differentiating both sides w.r.t x, we get:
\[\begin{align}
& \Rightarrow \dfrac{ds}{dx}=\dfrac{d}{dx}\left( {{a}^{a}} \right) \\
& \Rightarrow \dfrac{ds}{dx}=0\cdots \cdots \cdots \left( 5 \right) \\
\end{align}\]
Putting values of (2), (3), (4), and (5) in equation (1) we get:
\[\begin{align}
& \dfrac{dy}{dx}={{x}^{x}}\left( 1+\log x \right)+a{{x}^{a-1}}+{{a}^{x}}\log x+0 \\
& \Rightarrow {{x}^{x}}\left( 1+\log x \right)+a{{x}^{a-1}}+{{a}^{x}}\log x \\
\end{align}\]
Hence, derivative of ${{x}^{x}}+{{x}^{a}}+{{a}^{x}}+{{a}^{a}}$ is ${{x}^{x}}\left( 1+\log x \right)+a{{x}^{a-1}}+{{a}^{x}}\log x$.
Note: Students should carefully find derivatives of all terms. They should keep in mind that, 'a' is constant here and so, its derivative is zero whereas u, v, w, s are functions, so we have to find $\dfrac{du}{dx},\dfrac{dv}{dx},\dfrac{dw}{dx},\dfrac{ds}{dx}$. While calculating differentiation of logarithmic functions, make sure that both $\dfrac{1}{u},\dfrac{du}{dx}$ terms should be written. Here, x>0 and a>0 are given because if they were negative, the function would move to the denominator and hence, the derivative would change.
(1) The derivative of a sum of functions is equal to the sum of the derivative of functions.
(2) The derivative of a constant is equal to zero.
(3) Product rule of two functions $\dfrac{d}{dx}\left( u\cdot v \right)$ is given as $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$.
(4) Chain rule of $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)$ is given as $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\cdot g'\left( x \right)\cdot \dfrac{du}{dx}$.
(5) $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$.
(6) $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$.
Also we will use logarithm properties given as $\log {{a}^{b}}=b\log a$.
Complete step by step answer:
Here, we are given function as ${{x}^{x}}+{{x}^{a}}+{{a}^{x}}+{{a}^{a}}$ where a>0 and x>0.
Let the given function be equal to y. So, $y={{x}^{x}}+{{x}^{a}}+{{a}^{x}}+{{a}^{a}}$.
Let us suppose that ${{x}^{x}}=u,{{x}^{a}}=v,{{a}^{x}}=w\text{ and }{{a}^{a}}=s$.
Therefore, y = u+v+w+s differentiating y w.r.t x, we get:
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( u+v+w+s \right)\]
As we know, the derivative of the sum of a function is equal to the sum of the derivative of the function. Therefore,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}+\dfrac{dw}{dx}+\dfrac{ds}{dx}\cdots \cdots \cdots \left( 1 \right)\]
Now, we need to find values of $\dfrac{du}{dx},\dfrac{dv}{dx},\dfrac{dw}{dx},\dfrac{ds}{dx}$.
Now, $u={{x}^{x}}$ taking log on both sides, we get:
\[\Rightarrow \log u=\log {{x}^{x}}\]
As we know, $\log {{a}^{b}}=b\log a$ so we get:
\[\Rightarrow \log u=x\log x\]
Differentiating both sides w.r.t x, we get:
\[\Rightarrow \dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( x\log x \right)\]
We know $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\text{ and }\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\cdot \dfrac{d}{dx}g\left( x \right)$ and product rule is given by $\dfrac{d}{dx}\left( u\cdot v \right)=\dfrac{udv}{dx}+\dfrac{vdu}{dx}$. Using these properties we get:
\[\begin{align}
& \dfrac{1}{u}\cdot \dfrac{du}{dx}=x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( x \right) \\
& \Rightarrow \dfrac{1}{u}\cdot \dfrac{du}{dx}=x\cdot \dfrac{1}{x}+\log x\cdot \left( 1 \right) \\
& \Rightarrow \dfrac{1}{u}\cdot \dfrac{du}{dx}=1+\log x \\
\end{align}\]
Taking u on other side, we get:
\[\Rightarrow \dfrac{du}{dx}=u\left( 1+\log x \right)\]
Since $u={{x}^{x}}$ we get:
\[\Rightarrow \dfrac{du}{dx}={{x}^{x}}\left( 1+\log x \right)\cdots \cdots \cdots \left( 2 \right)\]
$v={{x}^{a}}$.
Differentiating both sides w.r.t x, we get:
\[\Rightarrow \dfrac{dv}{dx}=\dfrac{d}{dx}\left( {{x}^{a}} \right)\]
As we know, $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ so we get:
\[\Rightarrow \dfrac{dv}{dx}=a{{x}^{a-1}}\cdots \cdots \cdots \left( 3 \right)\]
$w={{a}^{x}}$.
Taking log on both sides, we get:
\[\Rightarrow \log w=\log {{a}^{x}}\]
Since $\log {{a}^{b}}=b\log a$ we get:
\[\Rightarrow \log w=x\log a\]
Differentiating both sides w.r.t x, we get:
\[\Rightarrow \dfrac{1}{w}\cdot \dfrac{dw}{dx}=x\dfrac{d\log a}{dx}+\log a\dfrac{dx}{dx}\]
As we know, differentiation of constant term is zero, therefore we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{w}\cdot \dfrac{dw}{dx}=x\cdot 0+\log a\left( 1 \right) \\
& \Rightarrow \dfrac{1}{w}\cdot \dfrac{dw}{dx}=\log a \\
\end{align}\]
Taking w on other side, we get:
\[\Rightarrow \dfrac{dw}{dx}=w\log a\]
Since $w={{a}^{x}}$ therefore,
\[\Rightarrow \dfrac{dw}{dx}={{a}^{x}}\log a\cdots \cdots \cdots \left( 4 \right)\]
$s={{a}^{a}}$.
Since 'a' is constant, therefore ${{a}^{a}}$ is also constant and derivatives of constant term is zero. Therefore, differentiating both sides w.r.t x, we get:
\[\begin{align}
& \Rightarrow \dfrac{ds}{dx}=\dfrac{d}{dx}\left( {{a}^{a}} \right) \\
& \Rightarrow \dfrac{ds}{dx}=0\cdots \cdots \cdots \left( 5 \right) \\
\end{align}\]
Putting values of (2), (3), (4), and (5) in equation (1) we get:
\[\begin{align}
& \dfrac{dy}{dx}={{x}^{x}}\left( 1+\log x \right)+a{{x}^{a-1}}+{{a}^{x}}\log x+0 \\
& \Rightarrow {{x}^{x}}\left( 1+\log x \right)+a{{x}^{a-1}}+{{a}^{x}}\log x \\
\end{align}\]
Hence, derivative of ${{x}^{x}}+{{x}^{a}}+{{a}^{x}}+{{a}^{a}}$ is ${{x}^{x}}\left( 1+\log x \right)+a{{x}^{a-1}}+{{a}^{x}}\log x$.
Note: Students should carefully find derivatives of all terms. They should keep in mind that, 'a' is constant here and so, its derivative is zero whereas u, v, w, s are functions, so we have to find $\dfrac{du}{dx},\dfrac{dv}{dx},\dfrac{dw}{dx},\dfrac{ds}{dx}$. While calculating differentiation of logarithmic functions, make sure that both $\dfrac{1}{u},\dfrac{du}{dx}$ terms should be written. Here, x>0 and a>0 are given because if they were negative, the function would move to the denominator and hence, the derivative would change.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

