
Differentiate the following with respect to \[x\].
1.\[\dfrac{{{e}^{x}}}{\sin x}\]
2. \[\sin \left( {{\tan }^{-1}}{{e}^{-x}} \right)\]
3. \[\sqrt{{{e}^{\sqrt{x}}}},x>0\]
Answer
499.5k+ views
Hint: We will be considering each of the three functions and then we must be differentiating with respect to \[x\], by applying the apt method for differentiating. The obtained answer of each of the function would be our required answer
Complete step-by-step solution:
Now let us learn about differentiation. Differentiation is a method which is used to find the instantaneous rate of change of function. It is used in finding the derivative of a function. Differentiation can be done even by applying the limits to the functions. There are four basic rules of differentiation. They are: sum and the difference rule, product rule, quotient rule and the chain rule.
Now let us start differentiating the given functions.
Firstly, let us consider, \[\dfrac{{{e}^{x}}}{\sin x}\]
Since we can see that it is in the form of \[\dfrac{u}{v}\], we will be applying the \[\dfrac{u}{v}\] method.
So we have, \[u={{e}^{x}}\] and \[v=\sin x\].
Let us consider it as \[y=\dfrac{{{e}^{x}}}{\sin x}\]
\[\Rightarrow y=\dfrac{u}{v}\]
Now upon differentiating on both sides with respect to \[x\], we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{u}{v} \right)}{dx} \\
& \dfrac{dy}{dx}=\dfrac{{{u}^{'}}v-{{v}^{'}}u}{{{v}^{2}}} \\
\end{align}\]
Now let us substitute the respective values. We get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{d\left( {{e}^{x}} \right)}{dx}\centerdot \sin x-\dfrac{d\left( \sin x \right)}{dx}\centerdot {{e}^{x}}}{{{\sin }^{2}}x}\]
Now let us differentiate it. We obtain,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{d\left( {{e}^{x}} \right)}{dx}\centerdot \sin x-\dfrac{d\left( \sin x \right)}{dx}\centerdot {{e}^{x}}}{{{\sin }^{2}}x} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\centerdot \sin x-\cos x\centerdot {{e}^{x}}}{{{\sin }^{2}}x} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( \sin x-\cos x \right)}{{{\sin }^{2}}x} \\
\end{align}\]
\[\therefore \] The derivative of \[\dfrac{{{e}^{x}}}{\sin x}\] is \[\dfrac{{{e}^{x}}\left( \sin x-\cos x \right)}{{{\sin }^{2}}x}\].
Now let us consider the next function \[\sin \left( {{\tan }^{-1}}{{e}^{-x}} \right)\].
We have \[y=\sin \left( {{\tan }^{-1}}{{e}^{-x}} \right)\]
Upon differentiating on both sides with respect to \[x\] we get,
\[{{y}^{'}}={{\left( \sin \left( {{\tan }^{-1}}{{e}^{-x}} \right) \right)}^{'}}\]
\[\begin{align}
& {{y}^{'}}={{\left( \sin \left( {{\tan }^{-1}}{{e}^{-x}} \right) \right)}^{'}} \\
& \Rightarrow {{y}^{'}}= \cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)\times {{\left( {{\tan }^{-1}}{{e}^{-x}} \right)}^{'}}\left[ \because {{\left( \text{sinx} \right)}^{\text{ }\!\!'\!\!\text{ }}}\text{=cosx} \right] \\
& \Rightarrow {{y}^{'}}= \cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)\times \dfrac{1}{1+{{\left( {{e}^{-x}} \right)}^{2}}}\times {{\left( {{e}^{-x}} \right)}^{'}}\left[ \because {{\left( {{\tan }^{-1}}x \right)}^{'}}=\dfrac{1}{1+{{x}^{2}}} \right] \\
& \Rightarrow {{y}^{'}}= \cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)\times \dfrac{1}{1+{{\left( {{e}^{-x}} \right)}^{2}}}\times -{{e}^{-x}} \\
& \Rightarrow {{y}^{'}}= - \dfrac{{{e}^{-x}}\cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)}{1+{{\left( {{e}^{-x}} \right)}^{2}}} \\
& \Rightarrow {{y}^{'}}= -\dfrac{{{e}^{-x}}\cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)}{1+{{e}^{-2x}}} \\
\end{align}\]
\[\therefore \] The derivative of \[\sin \left( {{\tan }^{-1}}{{e}^{-x}} \right)\] is \[- \dfrac{{{e}^{-x}}\cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)}{1+{{e}^{-2x}}}\].
Now let us consider our next function \[\sqrt{{{e}^{\sqrt{x}}}},x>0\].
We have \[y=\sqrt{{{e}^{\sqrt{x}}}}\]
Upon differentiating on both sides with respect to \[x\] by applying the chain rule, we get,
\[\begin{align}
& {{y}^{'}}={{\left( \sqrt{{{e}^{\sqrt{x}}}} \right)}^{'}} \\
& \Rightarrow {{y}^{'}}=\dfrac{1}{2\sqrt{{{e}^{\sqrt{x}}}}}\times {{\left( {{e}^{\sqrt{x}}} \right)}^{'}} \\
& \Rightarrow {{y}^{'}}=\dfrac{1}{2\sqrt{{{e}^{\sqrt{x}}}}}\times {{e}^{\sqrt{x}}}\times {{\left( \sqrt{x} \right)}^{'}} \\
& \Rightarrow {{y}^{'}}=\dfrac{1}{2\sqrt{{{e}^{\sqrt{x}}}}}\times {{e}^{\sqrt{x}}}\times \dfrac{1}{2\sqrt{x}} \\
& \Rightarrow {{y}^{'}}=\dfrac{{{e}^{\sqrt{x}}}}{4\sqrt{x\centerdot \sqrt{{{e}^{\sqrt{x}}}}}} \\
\end{align}\]
\[\therefore \] The derivative of \[\sqrt{{{e}^{\sqrt{x}}}}\] is \[\dfrac{{{e}^{\sqrt{x}}}}{4\sqrt{x\centerdot \sqrt{{{e}^{\sqrt{x}}}}}}\].
Note: We must always have a note regarding the variable that is to be considered for differentiation. We can apply the concept of differentiation in finding out the displacement with respect to time. The opposite of finding the derivative is called an antiderivative.
Complete step-by-step solution:
Now let us learn about differentiation. Differentiation is a method which is used to find the instantaneous rate of change of function. It is used in finding the derivative of a function. Differentiation can be done even by applying the limits to the functions. There are four basic rules of differentiation. They are: sum and the difference rule, product rule, quotient rule and the chain rule.
Now let us start differentiating the given functions.
Firstly, let us consider, \[\dfrac{{{e}^{x}}}{\sin x}\]
Since we can see that it is in the form of \[\dfrac{u}{v}\], we will be applying the \[\dfrac{u}{v}\] method.
So we have, \[u={{e}^{x}}\] and \[v=\sin x\].
Let us consider it as \[y=\dfrac{{{e}^{x}}}{\sin x}\]
\[\Rightarrow y=\dfrac{u}{v}\]
Now upon differentiating on both sides with respect to \[x\], we get
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{u}{v} \right)}{dx} \\
& \dfrac{dy}{dx}=\dfrac{{{u}^{'}}v-{{v}^{'}}u}{{{v}^{2}}} \\
\end{align}\]
Now let us substitute the respective values. We get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{d\left( {{e}^{x}} \right)}{dx}\centerdot \sin x-\dfrac{d\left( \sin x \right)}{dx}\centerdot {{e}^{x}}}{{{\sin }^{2}}x}\]
Now let us differentiate it. We obtain,
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{d\left( {{e}^{x}} \right)}{dx}\centerdot \sin x-\dfrac{d\left( \sin x \right)}{dx}\centerdot {{e}^{x}}}{{{\sin }^{2}}x} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\centerdot \sin x-\cos x\centerdot {{e}^{x}}}{{{\sin }^{2}}x} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( \sin x-\cos x \right)}{{{\sin }^{2}}x} \\
\end{align}\]
\[\therefore \] The derivative of \[\dfrac{{{e}^{x}}}{\sin x}\] is \[\dfrac{{{e}^{x}}\left( \sin x-\cos x \right)}{{{\sin }^{2}}x}\].
Now let us consider the next function \[\sin \left( {{\tan }^{-1}}{{e}^{-x}} \right)\].
We have \[y=\sin \left( {{\tan }^{-1}}{{e}^{-x}} \right)\]
Upon differentiating on both sides with respect to \[x\] we get,
\[{{y}^{'}}={{\left( \sin \left( {{\tan }^{-1}}{{e}^{-x}} \right) \right)}^{'}}\]
\[\begin{align}
& {{y}^{'}}={{\left( \sin \left( {{\tan }^{-1}}{{e}^{-x}} \right) \right)}^{'}} \\
& \Rightarrow {{y}^{'}}= \cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)\times {{\left( {{\tan }^{-1}}{{e}^{-x}} \right)}^{'}}\left[ \because {{\left( \text{sinx} \right)}^{\text{ }\!\!'\!\!\text{ }}}\text{=cosx} \right] \\
& \Rightarrow {{y}^{'}}= \cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)\times \dfrac{1}{1+{{\left( {{e}^{-x}} \right)}^{2}}}\times {{\left( {{e}^{-x}} \right)}^{'}}\left[ \because {{\left( {{\tan }^{-1}}x \right)}^{'}}=\dfrac{1}{1+{{x}^{2}}} \right] \\
& \Rightarrow {{y}^{'}}= \cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)\times \dfrac{1}{1+{{\left( {{e}^{-x}} \right)}^{2}}}\times -{{e}^{-x}} \\
& \Rightarrow {{y}^{'}}= - \dfrac{{{e}^{-x}}\cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)}{1+{{\left( {{e}^{-x}} \right)}^{2}}} \\
& \Rightarrow {{y}^{'}}= -\dfrac{{{e}^{-x}}\cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)}{1+{{e}^{-2x}}} \\
\end{align}\]
\[\therefore \] The derivative of \[\sin \left( {{\tan }^{-1}}{{e}^{-x}} \right)\] is \[- \dfrac{{{e}^{-x}}\cos \left( {{\tan }^{-1}}{{e}^{-x}} \right)}{1+{{e}^{-2x}}}\].
Now let us consider our next function \[\sqrt{{{e}^{\sqrt{x}}}},x>0\].
We have \[y=\sqrt{{{e}^{\sqrt{x}}}}\]
Upon differentiating on both sides with respect to \[x\] by applying the chain rule, we get,
\[\begin{align}
& {{y}^{'}}={{\left( \sqrt{{{e}^{\sqrt{x}}}} \right)}^{'}} \\
& \Rightarrow {{y}^{'}}=\dfrac{1}{2\sqrt{{{e}^{\sqrt{x}}}}}\times {{\left( {{e}^{\sqrt{x}}} \right)}^{'}} \\
& \Rightarrow {{y}^{'}}=\dfrac{1}{2\sqrt{{{e}^{\sqrt{x}}}}}\times {{e}^{\sqrt{x}}}\times {{\left( \sqrt{x} \right)}^{'}} \\
& \Rightarrow {{y}^{'}}=\dfrac{1}{2\sqrt{{{e}^{\sqrt{x}}}}}\times {{e}^{\sqrt{x}}}\times \dfrac{1}{2\sqrt{x}} \\
& \Rightarrow {{y}^{'}}=\dfrac{{{e}^{\sqrt{x}}}}{4\sqrt{x\centerdot \sqrt{{{e}^{\sqrt{x}}}}}} \\
\end{align}\]
\[\therefore \] The derivative of \[\sqrt{{{e}^{\sqrt{x}}}}\] is \[\dfrac{{{e}^{\sqrt{x}}}}{4\sqrt{x\centerdot \sqrt{{{e}^{\sqrt{x}}}}}}\].
Note: We must always have a note regarding the variable that is to be considered for differentiation. We can apply the concept of differentiation in finding out the displacement with respect to time. The opposite of finding the derivative is called an antiderivative.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

