
Differentiate the following expressions
(i) \[\log \left[ {{a}^{4x}}{{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}} \right]\]
(ii) \[\log [{{\sin }^{3}}x.{{\cos }^{4}}x.{{({{x}^{2}}-1)}^{5}}]\]
(iii) \[\log \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]\]
(iv) \[{{4}^{{{\log }_{2}}\sec x}}-{{9}^{{{\log }_{3}}\tan x}}\]
Answer
612.6k+ views
Hint: We will first use logarithmic rules to first simplify the expressions and then we will differentiate to get the answers. So of the logarithmic rules are \[\log (AB)=\log A+\log B\], \[\log {{x}^{n}}=n\log x\] and \[\log \left( \dfrac{A}{B} \right)=\log A-\log B\].
Complete step-by-step solution -
(i) \[y=\log \left[ {{a}^{4x}}{{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}} \right].........(1)\]
First we will simplify equation (1) by applying the product rule that is \[\log (AB)=\log A+\log B\].
\[y=\log {{a}^{4x}}+\log {{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}}..........(2)\]
Now applying \[\log {{x}^{n}}=n\log x\] rule in equation (2) we get,
\[y=4x\log a+\dfrac{3}{4}\log \left( \dfrac{x-5}{x+4} \right)..........(3)\]
Now differentiating both sides of equation (3) we get,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ 4x\log a+\dfrac{3}{4}\log \left( \dfrac{x-5}{x+4} \right) \right]..........(4)\]
We know that differentiation of a constant is zero and also the differentiation of log(x) is \[\dfrac{1}{x}\]. We also know \[\log \left( \dfrac{A}{B} \right)=\log A-\log B\]. So using these information in equation (4) we get,
\[\begin{align}
& \dfrac{dy}{dx}=\left[ 4\log a\dfrac{d}{dx}(x)+\dfrac{3}{4}\dfrac{d}{dx}[\log \left( x-5 \right)]-\dfrac{3}{4}\dfrac{d}{dx}[\log \left( x+4 \right)] \right] \\
& \dfrac{dy}{dx}=\left[ 4\log a.1+\dfrac{3}{4}\times \dfrac{1}{x-5}\dfrac{d}{dx}(x-5)-\dfrac{3}{4}\times \dfrac{1}{x+4}\dfrac{d}{dx}(x+4) \right].......(5) \\
\end{align}\]
Now differentiating again in equation (5) we get the final answer,
\[\begin{align}
& \dfrac{dy}{dx}=\left[ 4\log a+\dfrac{3}{4}\times \dfrac{1}{x-5}(1-0)-\dfrac{3}{4}\times \dfrac{1}{x+4}(1+0) \right] \\
& \dfrac{dy}{dx}=4\log a+\dfrac{3}{4(x-5)}-\dfrac{3}{4(x+4)} \\
\end{align}\]
Hence the answer is \[\dfrac{dy}{dx}=4\log a+\dfrac{3}{4(x-5)}-\dfrac{3}{4(x+4)}\].
(ii) \[y=\log [{{\sin }^{3}}x.{{\cos }^{4}}x.{{({{x}^{2}}-1)}^{5}}].......(1)\]
First we will simplify equation (1) by applying the product rule that is \[\log (ABC)=\log A+\log B+\log C\].
\[y=\log {{\sin }^{3}}x+\log {{\cos }^{4}}x+\log {{({{x}^{2}}-1)}^{5}}.......(2)\]
Now applying \[\log {{x}^{n}}=n\log x\] rule in equation (2) we get,
\[y=3\log \sin x+4\log \cos x+5\log ({{x}^{2}}-1).......(3)\]
Now differentiating both sides of equation (3) we get,
\[\dfrac{dy}{dx}=3\dfrac{d}{dx}(\log \sin x)+4\dfrac{d}{dx}(\log \cos x)+5\dfrac{d}{dx}[\log ({{x}^{2}}-1)].......(4)\]
We know that differentiation of a constant is zero and also differentiation of log(x) is \[\dfrac{1}{x}\]. So using this information in equation (4) we get,
\[\dfrac{dy}{dx}=3\times \dfrac{1}{\sin x}\dfrac{d}{dx}(\sin x)+4\times \dfrac{1}{\cos x}\dfrac{d}{dx}(\cos x)+5\times \dfrac{1}{{{x}^{2}}-1}\dfrac{d}{dx}[({{x}^{2}}-1)].......(5)\]
Now differentiating again in equation (5) we get the final answer,
\[\begin{align}
& \dfrac{dy}{dx}=3\times \dfrac{1}{\sin x}\times \cos x+4\times \dfrac{1}{\cos x}\times -\sin x+5\times \dfrac{1}{{{x}^{2}}-1}\times 2x \\
& \dfrac{dy}{dx}=3\cot x-4\tan x+\dfrac{10x}{{{x}^{2}}-1} \\
\end{align}\]
Hence the answer is \[\dfrac{dy}{dx}=3\cot x-4\tan x+\dfrac{10x}{{{x}^{2}}-1}\].
(iii) \[y=\log \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]...........(1)\]
First we will simplify equation (1) by applying the division rule that is \[\log \left( \dfrac{A}{B} \right)=\log A-\log B\].
\[y=\log (x+\sqrt{{{x}^{2}}+{{a}^{2}}})-\log (-x+\sqrt{{{x}^{2}}+{{a}^{2}}})...........(2)\]
Now differentiating both sides of equation (2) we get,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \log (x+\sqrt{{{x}^{2}}+{{a}^{2}}}) \right]-\dfrac{d}{dx}\left[ \log (-x+\sqrt{{{x}^{2}}+{{a}^{2}}}) \right]...........(3)\]
We know that differentiation of a constant is zero and also differentiation of log(x) is \[\dfrac{1}{x}\]. So using this information in equation (3) we get,
\[\dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \dfrac{d}{dx}\left[ x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}\left[ -x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right]...........(4)\]
Now differentiating again in equation (4) we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ 1+\dfrac{1}{2\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}({{x}^{2}}+{{a}^{2}}) \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ -1+\dfrac{1}{2\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}({{x}^{2}}+{{a}^{2}}) \right] \\
& \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ 1+\dfrac{2x}{2\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ -1+\dfrac{2x}{2\sqrt{{{x}^{2}}+{{a}^{2}}}} \right] \\
& \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]-\dfrac{1}{-(x-\sqrt{{{x}^{2}}+{{a}^{2}}})}\times \left[ \dfrac{x-\sqrt{{{x}^{2}}+{{a}^{2}}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}} \right].........(5) \\
& \\
\end{align}\]
Cancelling similar terms from equation (5) we get the final answer,
\[\dfrac{dy}{dx}=\dfrac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}+\dfrac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}=\dfrac{2}{\sqrt{{{x}^{2}}+{{a}^{2}}}}\]
Hence the answer is \[\dfrac{dy}{dx}=\dfrac{2}{\sqrt{{{x}^{2}}+{{a}^{2}}}}\].
(iv) \[y={{4}^{{{\log }_{2}}\sec x}}-{{9}^{{{\log }_{3}}\tan x}}........(1)\]
4 can be written as \[{{2}^{2}}\] and 9 can be written as \[{{3}^{2}}\]. So using this in equation (1) we get,
\[y={{2}^{2{{\log }_{2}}\sec x}}-{{3}^{3{{\log }_{3}}\tan x}}........(2)\]
Now applying \[\log {{x}^{n}}=n\log x\] rule in equation (2) we get,
\[y={{2}^{{{\log }_{2}}{{\sec }^{2}}x}}-{{3}^{{{\log }_{3}}{{\tan }^{2}}x}}........(3)\]
We know that \[{{a}^{{{\log }_{a}}x}}=x\]. Now applying this rule in equation (3) we get,
\[\begin{align}
& y={{\sec }^{2}}x-{{\tan }^{2}}x \\
& y=1......(4) \\
\end{align}\]
Now differentiating equation (4) we get,
\[\dfrac{dy}{dx}=0\].
Hence the answer is \[\dfrac{dy}{dx}=0\].
Note: Remembering logarithmic rules and trigonometric identities is the key here. Also we should know the different differentiation formulas. And differentiation of a constant is always zero.
Complete step-by-step solution -
(i) \[y=\log \left[ {{a}^{4x}}{{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}} \right].........(1)\]
First we will simplify equation (1) by applying the product rule that is \[\log (AB)=\log A+\log B\].
\[y=\log {{a}^{4x}}+\log {{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}}..........(2)\]
Now applying \[\log {{x}^{n}}=n\log x\] rule in equation (2) we get,
\[y=4x\log a+\dfrac{3}{4}\log \left( \dfrac{x-5}{x+4} \right)..........(3)\]
Now differentiating both sides of equation (3) we get,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ 4x\log a+\dfrac{3}{4}\log \left( \dfrac{x-5}{x+4} \right) \right]..........(4)\]
We know that differentiation of a constant is zero and also the differentiation of log(x) is \[\dfrac{1}{x}\]. We also know \[\log \left( \dfrac{A}{B} \right)=\log A-\log B\]. So using these information in equation (4) we get,
\[\begin{align}
& \dfrac{dy}{dx}=\left[ 4\log a\dfrac{d}{dx}(x)+\dfrac{3}{4}\dfrac{d}{dx}[\log \left( x-5 \right)]-\dfrac{3}{4}\dfrac{d}{dx}[\log \left( x+4 \right)] \right] \\
& \dfrac{dy}{dx}=\left[ 4\log a.1+\dfrac{3}{4}\times \dfrac{1}{x-5}\dfrac{d}{dx}(x-5)-\dfrac{3}{4}\times \dfrac{1}{x+4}\dfrac{d}{dx}(x+4) \right].......(5) \\
\end{align}\]
Now differentiating again in equation (5) we get the final answer,
\[\begin{align}
& \dfrac{dy}{dx}=\left[ 4\log a+\dfrac{3}{4}\times \dfrac{1}{x-5}(1-0)-\dfrac{3}{4}\times \dfrac{1}{x+4}(1+0) \right] \\
& \dfrac{dy}{dx}=4\log a+\dfrac{3}{4(x-5)}-\dfrac{3}{4(x+4)} \\
\end{align}\]
Hence the answer is \[\dfrac{dy}{dx}=4\log a+\dfrac{3}{4(x-5)}-\dfrac{3}{4(x+4)}\].
(ii) \[y=\log [{{\sin }^{3}}x.{{\cos }^{4}}x.{{({{x}^{2}}-1)}^{5}}].......(1)\]
First we will simplify equation (1) by applying the product rule that is \[\log (ABC)=\log A+\log B+\log C\].
\[y=\log {{\sin }^{3}}x+\log {{\cos }^{4}}x+\log {{({{x}^{2}}-1)}^{5}}.......(2)\]
Now applying \[\log {{x}^{n}}=n\log x\] rule in equation (2) we get,
\[y=3\log \sin x+4\log \cos x+5\log ({{x}^{2}}-1).......(3)\]
Now differentiating both sides of equation (3) we get,
\[\dfrac{dy}{dx}=3\dfrac{d}{dx}(\log \sin x)+4\dfrac{d}{dx}(\log \cos x)+5\dfrac{d}{dx}[\log ({{x}^{2}}-1)].......(4)\]
We know that differentiation of a constant is zero and also differentiation of log(x) is \[\dfrac{1}{x}\]. So using this information in equation (4) we get,
\[\dfrac{dy}{dx}=3\times \dfrac{1}{\sin x}\dfrac{d}{dx}(\sin x)+4\times \dfrac{1}{\cos x}\dfrac{d}{dx}(\cos x)+5\times \dfrac{1}{{{x}^{2}}-1}\dfrac{d}{dx}[({{x}^{2}}-1)].......(5)\]
Now differentiating again in equation (5) we get the final answer,
\[\begin{align}
& \dfrac{dy}{dx}=3\times \dfrac{1}{\sin x}\times \cos x+4\times \dfrac{1}{\cos x}\times -\sin x+5\times \dfrac{1}{{{x}^{2}}-1}\times 2x \\
& \dfrac{dy}{dx}=3\cot x-4\tan x+\dfrac{10x}{{{x}^{2}}-1} \\
\end{align}\]
Hence the answer is \[\dfrac{dy}{dx}=3\cot x-4\tan x+\dfrac{10x}{{{x}^{2}}-1}\].
(iii) \[y=\log \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]...........(1)\]
First we will simplify equation (1) by applying the division rule that is \[\log \left( \dfrac{A}{B} \right)=\log A-\log B\].
\[y=\log (x+\sqrt{{{x}^{2}}+{{a}^{2}}})-\log (-x+\sqrt{{{x}^{2}}+{{a}^{2}}})...........(2)\]
Now differentiating both sides of equation (2) we get,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \log (x+\sqrt{{{x}^{2}}+{{a}^{2}}}) \right]-\dfrac{d}{dx}\left[ \log (-x+\sqrt{{{x}^{2}}+{{a}^{2}}}) \right]...........(3)\]
We know that differentiation of a constant is zero and also differentiation of log(x) is \[\dfrac{1}{x}\]. So using this information in equation (3) we get,
\[\dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \dfrac{d}{dx}\left[ x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}\left[ -x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right]...........(4)\]
Now differentiating again in equation (4) we get,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ 1+\dfrac{1}{2\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}({{x}^{2}}+{{a}^{2}}) \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ -1+\dfrac{1}{2\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}({{x}^{2}}+{{a}^{2}}) \right] \\
& \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ 1+\dfrac{2x}{2\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ -1+\dfrac{2x}{2\sqrt{{{x}^{2}}+{{a}^{2}}}} \right] \\
& \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]-\dfrac{1}{-(x-\sqrt{{{x}^{2}}+{{a}^{2}}})}\times \left[ \dfrac{x-\sqrt{{{x}^{2}}+{{a}^{2}}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}} \right].........(5) \\
& \\
\end{align}\]
Cancelling similar terms from equation (5) we get the final answer,
\[\dfrac{dy}{dx}=\dfrac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}+\dfrac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}=\dfrac{2}{\sqrt{{{x}^{2}}+{{a}^{2}}}}\]
Hence the answer is \[\dfrac{dy}{dx}=\dfrac{2}{\sqrt{{{x}^{2}}+{{a}^{2}}}}\].
(iv) \[y={{4}^{{{\log }_{2}}\sec x}}-{{9}^{{{\log }_{3}}\tan x}}........(1)\]
4 can be written as \[{{2}^{2}}\] and 9 can be written as \[{{3}^{2}}\]. So using this in equation (1) we get,
\[y={{2}^{2{{\log }_{2}}\sec x}}-{{3}^{3{{\log }_{3}}\tan x}}........(2)\]
Now applying \[\log {{x}^{n}}=n\log x\] rule in equation (2) we get,
\[y={{2}^{{{\log }_{2}}{{\sec }^{2}}x}}-{{3}^{{{\log }_{3}}{{\tan }^{2}}x}}........(3)\]
We know that \[{{a}^{{{\log }_{a}}x}}=x\]. Now applying this rule in equation (3) we get,
\[\begin{align}
& y={{\sec }^{2}}x-{{\tan }^{2}}x \\
& y=1......(4) \\
\end{align}\]
Now differentiating equation (4) we get,
\[\dfrac{dy}{dx}=0\].
Hence the answer is \[\dfrac{dy}{dx}=0\].
Note: Remembering logarithmic rules and trigonometric identities is the key here. Also we should know the different differentiation formulas. And differentiation of a constant is always zero.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

