
Differentiate $ {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right) $ with respect to $ {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $ , when $ x \ne 0 $.
Answer
574.2k+ views
Hint: In this differentiation problem we first let one function as ‘u’ and other as ‘v’ and then simplify the angle of inverse trigonometric functions given by using suitable substitution. After simplification of both, divide their differentiation result to obtain the required solution of the problem.
Complete step by step solution:
Note: For inverses trigonometric functions we first see that if angles of the given functions are not in simplified form then we must use suitable substitution to convert given angle of trigonometric function in lowest form of simplified form and only then differentiate them otherwise calculating ends with wrong answer.
Formula used:
$ {\sec ^2}\theta - {\tan ^2}\theta = 1,\,\,\,\,\,$
$\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }},\,\,$
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\,\,\,$
$\sec \theta = \dfrac{1}{{\cos \theta }},\,\,$
$\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}},\,\,1 - \cos \theta = 2{\sin ^2}\left( {\dfrac{\theta}{2}} \right)\,\,\, $
$ \sin \theta = 2.\sin \left( {\dfrac{\theta}{2}} \right)\\cos \left( {\dfrac{\theta}{2}} \right)\ $
Suppose
$u = \dfrac{{{{\tan }^{ - 1}}\sqrt {1 + {x^2}} - 1}}{x}$
We know that for an inverse trigonometric function having $ \sqrt {1 + {x^2}} $ term suitable substitution is $ x = \tan \theta $ .
Therefore taking $ x = \tan \theta $ in above we have,
$u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {{\tan }^2}\theta } - 1}}{{\tan \theta }}} \right)$
$ \Rightarrow u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {{{\sec }^2}\theta } - 1}}{{\tan \theta }}} \right) $
$\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right\} $
$ \Rightarrow u = {\tan ^{ - 1}}\left( {\dfrac{{\sec \theta - 1}}{{\tan \theta }}} \right) $
Writing $ \sec \theta \,\,and\,\,\tan \theta \,\,\operatorname{int} o\,\,basic\,\,trigonometric\,\,functions $
$u = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{\cos \theta }} - 1}}{{\dfrac{{\sin \theta }}{{\cos \theta }}}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \left\{ {\sec \theta = \dfrac{1}{{\cos \theta }}and\,\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right\}$
Taking L.C.M. we have,
$ u = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{1 - \cos \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }}}}} \right) $
or
$ u = {\tan ^{ - 1}}\left( {\dfrac{{1 - \cos \theta }}{{\sin \theta }}} \right) $
Now, using half angle of identities of trigonometric functions $ 1 - \cos \theta = 2{\sin ^2}\left( \dfrac{\theta }{2} \right),\,\,and\,\,\sin \theta = 2.\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right) $ we have
$ u = {\tan ^{ - 1}}\left( {\dfrac{{2{{\sin }^2}\left( \dfrac{\theta }{2} \right)}}{{2.\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right)}}} \right) $
$ u = {\tan ^{ - 1}}\left( {\dfrac{{\sin \left( \dfrac{\theta }{2} \right)}}{{\cos \left( \dfrac{\theta }{2} \right)}}} \right) $
$ u = {\tan ^{ - 1}}\left\{ {\tan \left( \dfrac{\theta }{2} \right)} \right\} $
$ u = \dfrac{\theta }{2},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because {{\tan }^{ - 1}}\left( {\tan \theta } \right) = \theta } \right\} $
From substitution $ x = \tan \theta \,\,\,we\,\,have\,\,\theta = {\tan ^{ - 1}}x $ . Using this in above we have
$ u = \dfrac{{{{\tan }^{ - 1}}x}}{2} $ or
$u = \dfrac{1}{2}{\tan ^{ - 1}}x $
Now, differentiating ‘u’ w.r.t. to x we have
$ \dfrac{{du}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) $
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{1}{{1 + {x^2}}}} \right) $
$\left\{ {\because \dfrac{d}{{dx}}{{\tan }^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}} \right\} $
Or
$ \dfrac{{du}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{1}{{1 + {x^2}}}} \right).......................(i) $
Now, considering v = $ {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $
Taking, x = $ \tan \theta $ in above and simplifying it we have,
$ v = {\sin ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right) $
$ \Rightarrow v = {\sin ^{ - 1}}\left( {\sin 2\theta } \right) ,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right\} $
$ v = 2\theta ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because {{\sin }^{ - 1}}\left( {\sin \theta } \right) = \theta } \right\} $
From substitution $ x = \tan \theta \,\,we\,\,have\,\,\theta = {\tan ^{ - 1}}x $ . Using this in above we have
$ v = 2{\tan ^{ - 1}}x $
Now, differentiating ‘v’ w.r.t. x we have,
$ \dfrac{{dv}}{{dx}} = \dfrac{d}{{d\theta }}(2{\tan ^{ - 1}}x) $
$ \Rightarrow \dfrac{{dv}}{{dx}} = 2\dfrac{d}{{d\theta }}({\tan ^{ - 1}}x) $
$ \Rightarrow \dfrac{{dv}}{{dx}} = 2\left( {\dfrac{1}{{1 + {x^2}}}} \right),\,\,\,\,\,\,\,\,\left\{ {{{\tan }^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}} \right\} $
or
$ \dfrac{{dv}}{{dx}} = \dfrac{2}{{1 + {x^2}}}........................(ii) $
Now, dividing equation (i) by equation (ii) we have
$ \dfrac{{\left( {\dfrac{{du}}{{d\theta }}} \right)}}{{\left( {\dfrac{{dv}}{{d\theta }}} \right)}} = \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{{1 + {x^2}}}} \right)}}{{2\left( {\dfrac{1}{{1 + {x^2}}}} \right)}} $
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{4} $
Therefore, from above we see that derivative of ‘u’ w.r.t. ‘v’ is $ \dfrac{1}{4} $ .
Hence, we can say that derivative of $ {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right) $ w.r.t. $ {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) $ is $ \dfrac{1}{4} $ .
So, the correct answer is “ $ \dfrac{1}{4} $ ”.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

