
How do you differentiate $\ln \left( {\dfrac{y}{x}} \right) = xy$ ?
Answer
475.5k+ views
Hint: In the given problem, we are required to differentiate both sides of the equation $\ln \left( {\dfrac{y}{x}} \right) = xy$ with respect to x. Since, $\ln \left( {\dfrac{y}{x}} \right) = xy$ is an implicit function, so we will have to differentiate the function with the implicit method of differentiation. So, differentiation of $\ln \left( {\dfrac{y}{x}} \right) = xy$ with respect to x will be done layer by layer using the chain rule of differentiation as in the given function, we cannot isolate the variables $x$ and $y$.
Complete step by step answer:
Consider, $\ln \left( {\dfrac{y}{x}} \right) = xy$. Differentiating both sides of the equation with respect to x, we get,
$\dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = \dfrac{d}{{dx}}\left( {xy} \right)$
We know the product rule of differentiation as $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$ .
So, we get the right side of the equation as,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = x\dfrac{{dy}}{{dx}} + y\dfrac{{d\left( x \right)}}{{dx}}$
Now, we make use of the power rule of differentiation as $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = x\dfrac{{dy}}{{dx}} + y$
We consider $\dfrac{y}{x}$ as t. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln t} \right] = x\dfrac{{dy}}{{dx}} + y$
Now, we know that the derivative of the logarithmic function $\ln x$ with respect to x is $\left( {\dfrac{1}{x}} \right)$. Hence, we get,
$ \Rightarrow \dfrac{1}{t}\left( {\dfrac{{dt}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y$
Now, putting t as $\left( {\dfrac{y}{x}} \right)$, we get,
$ \Rightarrow \dfrac{1}{{\left( {\dfrac{y}{x}} \right)}}\left( {\dfrac{{d\left( {\dfrac{y}{x}} \right)}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y$
Now, we use the quotient rule of differentiation as $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, we get,
$ \Rightarrow \left( {\dfrac{x}{y}} \right)\left( {\dfrac{{x\dfrac{{dy}}{{dx}} - y\left( {\dfrac{{dx}}{{dx}}} \right)}}{{{x^2}}}} \right) = x\dfrac{{dy}}{{dx}} + y$
Opening the brackets,
$ \Rightarrow \left( {\dfrac{1}{y}} \right)\left( {\dfrac{{x\dfrac{{dy}}{{dx}} - y}}{x}} \right) = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \dfrac{1}{x} = x\dfrac{{dy}}{{dx}} + y$
Now, isolating the $\dfrac{{dy}}{{dx}}$ terms, we get,
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = \dfrac{1}{x} + y$
Taking $\dfrac{{dy}}{{dx}}$ common in left side of equation, we get,
$ \therefore \dfrac{{dy}}{{dx}} = \left( {\dfrac{{1 + xy}}{x}} \right)\left( {\dfrac{y}{{1 - xy}}} \right)$
Therefore, we get $\dfrac{{dy}}{{dx}}$ as $\left( {\dfrac{{1 + xy}}{x}} \right)\left( {\dfrac{y}{{1 - xy}}} \right)$.
Note: Implicit functions are those functions that involve two variables and the two variables are not separable and cannot be isolated from each other. Quotient rule of differentiation $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ is used to find derivative of rational expressions whereas product rule helps in finding derivative of product functions.
Complete step by step answer:
Consider, $\ln \left( {\dfrac{y}{x}} \right) = xy$. Differentiating both sides of the equation with respect to x, we get,
$\dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = \dfrac{d}{{dx}}\left( {xy} \right)$
We know the product rule of differentiation as $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$ .
So, we get the right side of the equation as,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = x\dfrac{{dy}}{{dx}} + y\dfrac{{d\left( x \right)}}{{dx}}$
Now, we make use of the power rule of differentiation as $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = x\dfrac{{dy}}{{dx}} + y$
We consider $\dfrac{y}{x}$ as t. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\ln t} \right] = x\dfrac{{dy}}{{dx}} + y$
Now, we know that the derivative of the logarithmic function $\ln x$ with respect to x is $\left( {\dfrac{1}{x}} \right)$. Hence, we get,
$ \Rightarrow \dfrac{1}{t}\left( {\dfrac{{dt}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y$
Now, putting t as $\left( {\dfrac{y}{x}} \right)$, we get,
$ \Rightarrow \dfrac{1}{{\left( {\dfrac{y}{x}} \right)}}\left( {\dfrac{{d\left( {\dfrac{y}{x}} \right)}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y$
Now, we use the quotient rule of differentiation as $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, we get,
$ \Rightarrow \left( {\dfrac{x}{y}} \right)\left( {\dfrac{{x\dfrac{{dy}}{{dx}} - y\left( {\dfrac{{dx}}{{dx}}} \right)}}{{{x^2}}}} \right) = x\dfrac{{dy}}{{dx}} + y$
Opening the brackets,
$ \Rightarrow \left( {\dfrac{1}{y}} \right)\left( {\dfrac{{x\dfrac{{dy}}{{dx}} - y}}{x}} \right) = x\dfrac{{dy}}{{dx}} + y$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \dfrac{1}{x} = x\dfrac{{dy}}{{dx}} + y$
Now, isolating the $\dfrac{{dy}}{{dx}}$ terms, we get,
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = \dfrac{1}{x} + y$
Taking $\dfrac{{dy}}{{dx}}$ common in left side of equation, we get,
$ \therefore \dfrac{{dy}}{{dx}} = \left( {\dfrac{{1 + xy}}{x}} \right)\left( {\dfrac{y}{{1 - xy}}} \right)$
Therefore, we get $\dfrac{{dy}}{{dx}}$ as $\left( {\dfrac{{1 + xy}}{x}} \right)\left( {\dfrac{y}{{1 - xy}}} \right)$.
Note: Implicit functions are those functions that involve two variables and the two variables are not separable and cannot be isolated from each other. Quotient rule of differentiation $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ is used to find derivative of rational expressions whereas product rule helps in finding derivative of product functions.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

