
Differentiate \[{\left( {\log x} \right)^x} + {\left( x \right)^{\log x}}\] with respect to \[x\].
Answer
567k+ views
Hint: Here, we need to find the derivative of the given function with respect to \[x\]. We will first assume the given function, and the individual terms to be three distinct variables. Then we will form an equation using the given function and variable. Then we will use the formula of differentiation to differentiate the equation. Then we will substitute the function and terms in place of variables to get the required answer.
Formula Used:
We will use the following formulas:
1.If \[x = y\], then \[\log x = \log y\].
2.The rule of logarithms \[\log {x^n} = n\log x\].
3.The derivative of a function of the form \[\log \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
4.The derivative of \[x\] with respect to \[x\] is 1.
5.The derivative of a function of the form \[{\left[ {f\left( x \right)} \right]^n}\] is \[n{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
6.The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Complete step-by-step answer:
Let \[y = {\left( {\log x} \right)^x} + {\left( x \right)^{\log x}}\], \[u = {\left( {\log x} \right)^x}\], and \[v = {\left( x \right)^{\log x}}\].
Thus, we get
\[y = u + v\]
We need to find \[\dfrac{{d\left[ {{{\left( {\log x} \right)}^x} + {{\left( x \right)}^{\log x}}} \right]}}{{dx}}\], that is \[\dfrac{{dy}}{{dx}}\].
We will differentiate the equations \[u = {\left( {\log x} \right)^x}\] and \[v = {\left( x \right)^{\log x}}\].
First, we will rewrite and differentiate both sides of \[u = {\left( {\log x} \right)^x}\] with respect to \[x\].
We know that if \[x = y\], then \[\log x = \log y\].
Thus, taking logarithms of both sides, we get
\[ \Rightarrow \log u = \log \left[ {{{\left( {\log x} \right)}^x}} \right]\]
Applying the rule of logarithms \[\log {x^n} = n\log x\], we get
\[\begin{array}{l} \Rightarrow \log u = \log \left[ {x\left( {\log x} \right)} \right]\\ \Rightarrow \log u = x\log \left( {\log x} \right)\end{array}\]
Differentiating both sides with respect to \[x\] using the product rule of differentiation, we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\log u} \right]}}{{dx}} = \dfrac{{d\left[ {x\log \left( {\log x} \right)} \right]}}{{dx}}\\ \Rightarrow \dfrac{{d\left[ {\log u} \right]}}{{dx}} = x\dfrac{{d\left[ {\log \left( {\log x} \right)} \right]}}{{dx}} + \dfrac{{d\left[ x \right]}}{{dx}}\log \left( {\log x} \right)\end{array}\]
The derivative of a function of the form \[\log \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
The derivate of \[x\] with respect to \[x\] is 1.
Therefore, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = x\left[ {\dfrac{1}{{\log x}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}} \right] + 1 \times \log \left( {\log x} \right)\\ \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = x\left[ {\dfrac{1}{{\log x}} \times \dfrac{1}{x}} \right] + \log \left( {\log x} \right)\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = \dfrac{1}{{\log x}} + \log \left( {\log x} \right)\]
Multiplying both sides of the equation by \[u\], we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = u\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]\]
Substituting \[u = {\left( {\log x} \right)^x}\] in the equation, we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]\]
Now, we will rewrite and differentiate both sides of \[v = {\left( x \right)^{\log x}}\] with respect to \[x\].
We know that if \[x = y\], then \[\log x = \log y\].
Thus, taking logarithms of both sides, we get
\[ \Rightarrow \log v = \log \left[ {{x^{\log x}}} \right]\]
Applying the rule of logarithms \[\log {x^n} = n\log x\], we get
\[\begin{array}{l} \Rightarrow \log v = \log x\left( {\log x} \right)\\ \Rightarrow \log v = {\left( {\log x} \right)^2}\end{array}\]
Differentiating both sides of the equation with respect to \[x\], we get
\[ \Rightarrow \dfrac{{d\left[ {\log v} \right]}}{{dx}} = \dfrac{{d\left[ {{{\left( {\log x} \right)}^2}} \right]}}{{dx}}\]
The derivative of a function of the form \[{\left[ {f\left( x \right)} \right]^n}\] is \[n{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
The derivative of a function of the form \[\log \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
Therefore, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = 2{\left( {\log x} \right)^{2 - 1}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}\\ \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = 2{\left( {\log x} \right)^1} \times \dfrac{1}{x}\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = \dfrac{{2\log x}}{x}\]
Multiplying both sides of the equation by \[v\], we get
\[ \Rightarrow \dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2\log x}}{x}} \right]\]
Substituting \[v = {\left( x \right)^{\log x}}\] in the equation, we get
\[ \Rightarrow \dfrac{{dv}}{{dx}} = {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\]
Now, we will find the value of \[\dfrac{{d\left[ {{{\left( {\log x} \right)}^x} + {{\left( x \right)}^{\log x}}} \right]}}{{dx}}\], that is \[\dfrac{{dy}}{{dx}}\].
Differentiating both sides of the equation \[y = u + v\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {u + v} \right)}}{{dx}}\]
The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Therefore, the equation becomes
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}\]
Substituting \[\dfrac{{du}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]\] and \[\dfrac{{dv}}{{dx}} = {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\] in the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right] + {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\]
Therefore, we get the derivative of the function \[{\left( {\log x} \right)^x} + {\left( x \right)^{\log x}}\] as \[{\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right] + {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\].
Note: We differentiated the expression \[x\log \left( {\log x} \right)\] using the product rule of differentiation. Differentiation is used to find the derivative of a function.The product rule of differentiation states that the derivative of the product of two functions is given as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + \dfrac{{d\left( u \right)}}{{dx}}v\]. In the expression \[x\log \left( {\log x} \right)\], the two functions are \[x\] and \[\log \left( {\log x} \right)\].
Formula Used:
We will use the following formulas:
1.If \[x = y\], then \[\log x = \log y\].
2.The rule of logarithms \[\log {x^n} = n\log x\].
3.The derivative of a function of the form \[\log \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
4.The derivative of \[x\] with respect to \[x\] is 1.
5.The derivative of a function of the form \[{\left[ {f\left( x \right)} \right]^n}\] is \[n{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
6.The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Complete step-by-step answer:
Let \[y = {\left( {\log x} \right)^x} + {\left( x \right)^{\log x}}\], \[u = {\left( {\log x} \right)^x}\], and \[v = {\left( x \right)^{\log x}}\].
Thus, we get
\[y = u + v\]
We need to find \[\dfrac{{d\left[ {{{\left( {\log x} \right)}^x} + {{\left( x \right)}^{\log x}}} \right]}}{{dx}}\], that is \[\dfrac{{dy}}{{dx}}\].
We will differentiate the equations \[u = {\left( {\log x} \right)^x}\] and \[v = {\left( x \right)^{\log x}}\].
First, we will rewrite and differentiate both sides of \[u = {\left( {\log x} \right)^x}\] with respect to \[x\].
We know that if \[x = y\], then \[\log x = \log y\].
Thus, taking logarithms of both sides, we get
\[ \Rightarrow \log u = \log \left[ {{{\left( {\log x} \right)}^x}} \right]\]
Applying the rule of logarithms \[\log {x^n} = n\log x\], we get
\[\begin{array}{l} \Rightarrow \log u = \log \left[ {x\left( {\log x} \right)} \right]\\ \Rightarrow \log u = x\log \left( {\log x} \right)\end{array}\]
Differentiating both sides with respect to \[x\] using the product rule of differentiation, we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\log u} \right]}}{{dx}} = \dfrac{{d\left[ {x\log \left( {\log x} \right)} \right]}}{{dx}}\\ \Rightarrow \dfrac{{d\left[ {\log u} \right]}}{{dx}} = x\dfrac{{d\left[ {\log \left( {\log x} \right)} \right]}}{{dx}} + \dfrac{{d\left[ x \right]}}{{dx}}\log \left( {\log x} \right)\end{array}\]
The derivative of a function of the form \[\log \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
The derivate of \[x\] with respect to \[x\] is 1.
Therefore, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = x\left[ {\dfrac{1}{{\log x}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}} \right] + 1 \times \log \left( {\log x} \right)\\ \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = x\left[ {\dfrac{1}{{\log x}} \times \dfrac{1}{x}} \right] + \log \left( {\log x} \right)\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = \dfrac{1}{{\log x}} + \log \left( {\log x} \right)\]
Multiplying both sides of the equation by \[u\], we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = u\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]\]
Substituting \[u = {\left( {\log x} \right)^x}\] in the equation, we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]\]
Now, we will rewrite and differentiate both sides of \[v = {\left( x \right)^{\log x}}\] with respect to \[x\].
We know that if \[x = y\], then \[\log x = \log y\].
Thus, taking logarithms of both sides, we get
\[ \Rightarrow \log v = \log \left[ {{x^{\log x}}} \right]\]
Applying the rule of logarithms \[\log {x^n} = n\log x\], we get
\[\begin{array}{l} \Rightarrow \log v = \log x\left( {\log x} \right)\\ \Rightarrow \log v = {\left( {\log x} \right)^2}\end{array}\]
Differentiating both sides of the equation with respect to \[x\], we get
\[ \Rightarrow \dfrac{{d\left[ {\log v} \right]}}{{dx}} = \dfrac{{d\left[ {{{\left( {\log x} \right)}^2}} \right]}}{{dx}}\]
The derivative of a function of the form \[{\left[ {f\left( x \right)} \right]^n}\] is \[n{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
The derivative of a function of the form \[\log \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
Therefore, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = 2{\left( {\log x} \right)^{2 - 1}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}\\ \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = 2{\left( {\log x} \right)^1} \times \dfrac{1}{x}\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = \dfrac{{2\log x}}{x}\]
Multiplying both sides of the equation by \[v\], we get
\[ \Rightarrow \dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2\log x}}{x}} \right]\]
Substituting \[v = {\left( x \right)^{\log x}}\] in the equation, we get
\[ \Rightarrow \dfrac{{dv}}{{dx}} = {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\]
Now, we will find the value of \[\dfrac{{d\left[ {{{\left( {\log x} \right)}^x} + {{\left( x \right)}^{\log x}}} \right]}}{{dx}}\], that is \[\dfrac{{dy}}{{dx}}\].
Differentiating both sides of the equation \[y = u + v\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {u + v} \right)}}{{dx}}\]
The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Therefore, the equation becomes
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}\]
Substituting \[\dfrac{{du}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]\] and \[\dfrac{{dv}}{{dx}} = {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\] in the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right] + {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\]
Therefore, we get the derivative of the function \[{\left( {\log x} \right)^x} + {\left( x \right)^{\log x}}\] as \[{\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right] + {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]\].
Note: We differentiated the expression \[x\log \left( {\log x} \right)\] using the product rule of differentiation. Differentiation is used to find the derivative of a function.The product rule of differentiation states that the derivative of the product of two functions is given as \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + \dfrac{{d\left( u \right)}}{{dx}}v\]. In the expression \[x\log \left( {\log x} \right)\], the two functions are \[x\] and \[\log \left( {\log x} \right)\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

