
Differentiate \[{(\cos x)^{\cos x}}\] with respect to x.
Answer
573.9k+ views
Hint: We differentiate the term in the question by assuming the whole term as a variable and then taking log on both sides of the equation. Using the property of log we open RHS and then differentiate both sides.
*If m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Complete step-by-step answer:
Let us assume \[y = {(\cos x)^{\cos x}}\]
Then taking log on both sides of the equation we can write.
\[\log (y) = \log [{(\cos x)^{\cos x}}]\] … (1)
Since we know the property of log, if m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Here \[m = \cos x,n = \cos x\]
Therefore, we can write \[\log [{(\cos x)^{\cos x}}] = \cos x[\log (\cos x)]\]
Substituting the value in equation (1)
\[\log y = \cos x[\log (\cos x)]\]
Now we differentiate on both sides of the equation with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right)\]
We will solve the RHS of the equation first.
We apply the product rule of differentiation on RHS of the equation.
Product rule says that \[\dfrac{d}{{dx}}(mn) = m\dfrac{{dn}}{{dx}} + n\dfrac{{dm}}{{dx}}\].
Substitute the values of \[m = \cos x,n = \log (\cos x)\]
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]\dfrac{{d(\cos x)}}{{dx}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]( - \sin x) \\
\]
… (2)
Now we have to apply chain rule for differentiation of the term \[[\log (\cos x)]\].
According to chain rule \[\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)\]where \[f'\]denotes differentiation of function f with respect to x and \[g'\]denotes differentiation of function g with respect to x.
Here substituting the values of \[f(x) = \log (x),g(x) = \cos x\]
\[
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{{d[\log (\cos x)]}}{{dx}}.\dfrac{{d(\cos x)}}{{dx}} \\
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{1}{{\cos x}}.( - \sin x) \\
\]
Substitute the value in equation (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x \times \dfrac{1}{{\cos x}} \times ( - \sin x) + [\log (\cos x)]( - \sin x)\]
Cancel out the common terms from numerator and denominator.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x - \sin x[\log (\cos x)]\]
Now we can take \[ - \sin x\] common and write the terms in RHS.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x\{ 1 + \log (\cos x)\} \]
Now solving LHS of the equation we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y} \times \dfrac{{dy}}{{dx}}\] {Applying chain rule}
Now equating both LHS and RHS of the equation we get
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \]
Cross multiplying the value of y to RHS of the equation.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times y \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}} \\
\]
Thus, differentiation of \[{(\cos x)^{\cos x}}\] is \[ - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}}\].
Note: Students are likely to make mistake in solving this question as they assume the power as normal power and try to differentiate directly through the way \[\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}\] which is wrong.
*If m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Complete step-by-step answer:
Let us assume \[y = {(\cos x)^{\cos x}}\]
Then taking log on both sides of the equation we can write.
\[\log (y) = \log [{(\cos x)^{\cos x}}]\] … (1)
Since we know the property of log, if m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Here \[m = \cos x,n = \cos x\]
Therefore, we can write \[\log [{(\cos x)^{\cos x}}] = \cos x[\log (\cos x)]\]
Substituting the value in equation (1)
\[\log y = \cos x[\log (\cos x)]\]
Now we differentiate on both sides of the equation with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right)\]
We will solve the RHS of the equation first.
We apply the product rule of differentiation on RHS of the equation.
Product rule says that \[\dfrac{d}{{dx}}(mn) = m\dfrac{{dn}}{{dx}} + n\dfrac{{dm}}{{dx}}\].
Substitute the values of \[m = \cos x,n = \log (\cos x)\]
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]\dfrac{{d(\cos x)}}{{dx}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]( - \sin x) \\
\]
… (2)
Now we have to apply chain rule for differentiation of the term \[[\log (\cos x)]\].
According to chain rule \[\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)\]where \[f'\]denotes differentiation of function f with respect to x and \[g'\]denotes differentiation of function g with respect to x.
Here substituting the values of \[f(x) = \log (x),g(x) = \cos x\]
\[
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{{d[\log (\cos x)]}}{{dx}}.\dfrac{{d(\cos x)}}{{dx}} \\
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{1}{{\cos x}}.( - \sin x) \\
\]
Substitute the value in equation (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x \times \dfrac{1}{{\cos x}} \times ( - \sin x) + [\log (\cos x)]( - \sin x)\]
Cancel out the common terms from numerator and denominator.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x - \sin x[\log (\cos x)]\]
Now we can take \[ - \sin x\] common and write the terms in RHS.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x\{ 1 + \log (\cos x)\} \]
Now solving LHS of the equation we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y} \times \dfrac{{dy}}{{dx}}\] {Applying chain rule}
Now equating both LHS and RHS of the equation we get
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \]
Cross multiplying the value of y to RHS of the equation.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times y \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}} \\
\]
Thus, differentiation of \[{(\cos x)^{\cos x}}\] is \[ - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}}\].
Note: Students are likely to make mistake in solving this question as they assume the power as normal power and try to differentiate directly through the way \[\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}\] which is wrong.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Plot a graph between potential difference V and current class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

The good milk producer Indian buffaloes are A Nagpuri class 12 biology CBSE

