
How many different angles would be formed by a transversal intersecting three parallel lines? How many different angle measures would there be?
Complete step by step solution:
Here a, b, c are parallel lines and d is the transversal line.
Angles are \[\angle 1,\angle 2,\angle 3,\angle 4,\angle 5,\angle 6,\angle 7,\angle 8,\angle 9,\angle 10,\angle 11\] and \[\angle 12\].
At the first intersection point(intersection of parallel line a and transversal d) four angles are formed.
We know that from the concept of geometry, the sum of adjacent angles is \[{{180}^{\circ }}\] and the adjacent angles are equal.
\[\Rightarrow \]\[\angle 1\]+\[\angle 2\]=\[{{180}^{\circ }}\] , \[\angle 3\]+\[\angle 4\]=\[{{180}^{\circ }}\],\[\angle 1\]=\[\angle 4\] and \[\angle 2\]=\[\angle 3\].
Similarly, at second intersection point we get:
\[\Rightarrow \]\[\angle 5\]+\[\angle 6\]=\[{{180}^{\circ }}\] , \[\angle 7\]+\[\angle 8\]=\[{{180}^{\circ }}\],\[\angle 5\] =\[\angle 8\] and \[\angle 6\]=\[\angle 7\].
Similarly, at third intersection point we get:
\[\Rightarrow \]\[\angle 9\]+\[\angle 10\]=\[{{180}^{\circ }}\] , \[\angle 11\]+\[\angle 12\]=\[{{180}^{\circ }}\], \[\angle 9\]=\[\angle 12\] and \[\angle 10\]=\[\angle 11\].
From the concept of geometry,
If the transversal line is passed through the parallel lines their corresponding angles are equal. So,
\[\Rightarrow \]\[\angle 1\]=\[\angle 5\]=\[\angle 9\], \[\angle 2\]=\[\angle 6\]=\[\angle 10\], \[\angle 3\]=\[\angle 7\]=\[\angle 11\], \[\angle 4\]=\[\angle 8\]=\[\angle 12\].
From the above all equations we get,
\[\Rightarrow \]\[\angle 1\]=\[\angle 4\]=\[\angle 5\]=\[\angle 8\]=\[\angle 9\]=\[\angle 12\].
\[\Rightarrow \]\[\angle 2\]=\[\angle 3\]=\[\angle 6\]=\[\angle 7\]=\[\angle 10\]=\[\angle 11\].
Hence it is concluded that 12 different angles are formed and only 2 different angle measures will be there by a transversal intersecting three parallel lines.












