
Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at $298K$ from their solubility product constants. Determine also the molarities of individual ions.
The solubility product constants are:
Silver chromate, $1.1 \times {10^{ - 12}}$
Barium chromate, $1.2 \times {10^{ - 10}}$
Ferric hydroxide, $1.0 \times {10^{ - 38}}$
Lead dichloride, $1.6 \times {10^{ - 5}}$
Mercurous chloride, $4.5 \times {10^{ - 29}}$
Answer
575.1k+ views
Hint: ${K_{sp}}$ represents the level at which a solute dissolves in a solution. More soluble substances have higher ${K_{sp}}$ value, each concentration is raised to the power of the respective coefficient of ion in a balanced chemical equation to calculate ${K_{sp}}$.
Complete step by step answer:
Silver chromate, $A{g_2}Cr{O_4}$
\[A{g_2}Cr{O_4} \to 2A{g^ + } + Cr{O_4}^{2 - }\]
We can see that as $xM$ silver chromate dissociates the obtained concentration of both the ions will be ${\text{2x and x}}$.
$ \Rightarrow \left[ {A{g^ + }} \right] = 2x$ and \[\left[ {Cr{O_4}^{2 - }} \right] = x\]
And the ${K_{sp}}$ will be
${K_{sp}} = \;{\left[ {A{g^ + }} \right]^2}\left[ {Cr{O_4}^{2 - }} \right]$
${K_{sp}} = \;{\left( {2x} \right)^2}\left( x \right) = 4{x^3}$
And we have already provided the value of ${K_{sp}}$ so we will compare it with our result.
$ \Rightarrow 4{x^3} = 1.1 \times {10^{ - 12}}$
$ \Rightarrow x = 6.5 \times {10^{ - 5}}$
Therefore the molarities of individual ions are,
$\left[ {A{g^ + }} \right] = 2x = 2 \times 6.5 \times {10^{ - 5}} = 1.30 \times {10^{ - 4}}$ and \[\left[ {Cr{O_4}^{2 - }} \right] = 6.5 \times {10^{ - 5}}\]
Barium chromate,$BaCr{O_4}$
\[BaCr{O_4} \to B{a^{ + 2}} + Cr{O_4}^{2 - }\]
We can see that as $xM$ barium chromate dissociates the obtained concentration of both the ions will be ${\text{x}}$.
$ \Rightarrow \left[ {B{a^{ + 2}}} \right] = x$ and \[\left[ {Cr{O_4}^{2 - }} \right] = x\]
And the ${K_{sp}}$ will be
${K_{sp}} = \;\left[ {B{a^{ + 2}}} \right]\left[ {Cr{O_4}^{2 - }} \right]$
${K_{sp}} = \;\left( x \right)\left( x \right) = {x^2}$
And we have already provided the value of ${K_{sp}}$ so we will compare it with our result.
$ \Rightarrow {x^2} = 1.2 \times {10^{ - 10}}$
$ \Rightarrow x = 1.09 \times {10^{ - 5}}$
Therefore the molarities of individual ions are,
$ \Rightarrow \left[ {B{a^{ + 2}}} \right] = \left[ {Cr{O_4}^{2 - }} \right] = 1.09 \times {10^{ - 5}}$
Similarly for ferric hydroxide,$Fe{(OH)_3}$
\[Fe{(OH)_3} \to F{e^{ + 3}} + 3O{H^ - }\]
$\left[ {F{e^{ + 3}}} \right] = x,\left[ {O{H^ - }} \right] = 3x$
${K_{sp}} = x \times {\left( {3x} \right)^3} = 27{x^4} = 1.0 \times {10^{ - 38}}$
Therefore the molarities of individual ions are,
\[[F{e^{ + 3}}] = x = 1.38 \times {10^{ - 10}}M\] and \[[O{H^ - }] = 3x = 4.14 \times {10^{ - 10}}M\]
Lead dichloride,$PbC{l_2}$
\[PbC{l_2} \to P{b^{ + 2}} + 2C{l^ - }\]
$\left[ {P{b^{ + 2}}} \right] = x,\left[ {C{l^ - }} \right] = 2x$
${K_{sp}} = x \times {\left( {2x} \right)^2} = 4{x^3} = 1.6 \times {10^{ - 5}}$
Therefore the molarities of individual ions are,
\[[P{b^{ + 2}}] = x = 0.0159M\] and \[[C{l^ - }] = 2x = 0.0318M\]
Mercurous iodide,$H{g_2}{I_2}$
\[H{g_2}{I_2} \to 2H{g^ + } + 2{I^ - }\]
$\left[ {H{g^ + }} \right] = \left[ {{I^ - }} \right] = 2x$
${K_{sp}} = {\left( {2x} \right)^2} \times {\left( {2x} \right)^2} = 16{s^4} = 4.5 \times {10^{ - 29}}$
$x = 4.09 \times {10^{ - 8}}M$
Therefore the molarities of individual ions are,
$ \Rightarrow \left[ {H{g^ + }} \right] = \left[ {{I^ - }} \right] = 2 \times 4.09 \times {10^{ - 8}} = 8.18 \times {10^{ - 8}}M$.
Note:
The concentration used of each and every ion in the calculation of solubility product constant should be in molarity or mole per liter. Sometimes in numerical a term \[Q\](reaction quotient) is introduced, it is used to determine the precipitate formation, if $Q = {K_{sp}}$ , a precipitate will form.
Complete step by step answer:
Silver chromate, $A{g_2}Cr{O_4}$
\[A{g_2}Cr{O_4} \to 2A{g^ + } + Cr{O_4}^{2 - }\]
We can see that as $xM$ silver chromate dissociates the obtained concentration of both the ions will be ${\text{2x and x}}$.
$ \Rightarrow \left[ {A{g^ + }} \right] = 2x$ and \[\left[ {Cr{O_4}^{2 - }} \right] = x\]
And the ${K_{sp}}$ will be
${K_{sp}} = \;{\left[ {A{g^ + }} \right]^2}\left[ {Cr{O_4}^{2 - }} \right]$
${K_{sp}} = \;{\left( {2x} \right)^2}\left( x \right) = 4{x^3}$
And we have already provided the value of ${K_{sp}}$ so we will compare it with our result.
$ \Rightarrow 4{x^3} = 1.1 \times {10^{ - 12}}$
$ \Rightarrow x = 6.5 \times {10^{ - 5}}$
Therefore the molarities of individual ions are,
$\left[ {A{g^ + }} \right] = 2x = 2 \times 6.5 \times {10^{ - 5}} = 1.30 \times {10^{ - 4}}$ and \[\left[ {Cr{O_4}^{2 - }} \right] = 6.5 \times {10^{ - 5}}\]
Barium chromate,$BaCr{O_4}$
\[BaCr{O_4} \to B{a^{ + 2}} + Cr{O_4}^{2 - }\]
We can see that as $xM$ barium chromate dissociates the obtained concentration of both the ions will be ${\text{x}}$.
$ \Rightarrow \left[ {B{a^{ + 2}}} \right] = x$ and \[\left[ {Cr{O_4}^{2 - }} \right] = x\]
And the ${K_{sp}}$ will be
${K_{sp}} = \;\left[ {B{a^{ + 2}}} \right]\left[ {Cr{O_4}^{2 - }} \right]$
${K_{sp}} = \;\left( x \right)\left( x \right) = {x^2}$
And we have already provided the value of ${K_{sp}}$ so we will compare it with our result.
$ \Rightarrow {x^2} = 1.2 \times {10^{ - 10}}$
$ \Rightarrow x = 1.09 \times {10^{ - 5}}$
Therefore the molarities of individual ions are,
$ \Rightarrow \left[ {B{a^{ + 2}}} \right] = \left[ {Cr{O_4}^{2 - }} \right] = 1.09 \times {10^{ - 5}}$
Similarly for ferric hydroxide,$Fe{(OH)_3}$
\[Fe{(OH)_3} \to F{e^{ + 3}} + 3O{H^ - }\]
$\left[ {F{e^{ + 3}}} \right] = x,\left[ {O{H^ - }} \right] = 3x$
${K_{sp}} = x \times {\left( {3x} \right)^3} = 27{x^4} = 1.0 \times {10^{ - 38}}$
Therefore the molarities of individual ions are,
\[[F{e^{ + 3}}] = x = 1.38 \times {10^{ - 10}}M\] and \[[O{H^ - }] = 3x = 4.14 \times {10^{ - 10}}M\]
Lead dichloride,$PbC{l_2}$
\[PbC{l_2} \to P{b^{ + 2}} + 2C{l^ - }\]
$\left[ {P{b^{ + 2}}} \right] = x,\left[ {C{l^ - }} \right] = 2x$
${K_{sp}} = x \times {\left( {2x} \right)^2} = 4{x^3} = 1.6 \times {10^{ - 5}}$
Therefore the molarities of individual ions are,
\[[P{b^{ + 2}}] = x = 0.0159M\] and \[[C{l^ - }] = 2x = 0.0318M\]
Mercurous iodide,$H{g_2}{I_2}$
\[H{g_2}{I_2} \to 2H{g^ + } + 2{I^ - }\]
$\left[ {H{g^ + }} \right] = \left[ {{I^ - }} \right] = 2x$
${K_{sp}} = {\left( {2x} \right)^2} \times {\left( {2x} \right)^2} = 16{s^4} = 4.5 \times {10^{ - 29}}$
$x = 4.09 \times {10^{ - 8}}M$
Therefore the molarities of individual ions are,
$ \Rightarrow \left[ {H{g^ + }} \right] = \left[ {{I^ - }} \right] = 2 \times 4.09 \times {10^{ - 8}} = 8.18 \times {10^{ - 8}}M$.
Note:
The concentration used of each and every ion in the calculation of solubility product constant should be in molarity or mole per liter. Sometimes in numerical a term \[Q\](reaction quotient) is introduced, it is used to determine the precipitate formation, if $Q = {K_{sp}}$ , a precipitate will form.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

