
Determine the integration $\int {{{\operatorname{Sec} }^{4/3}}} x.\cos e{c^{8/3}}xdx$ is equal to
A. $ - \dfrac{3}{5}{\tan ^{ - 8/3}}x + 3{\tan ^{ - 2/3}}x + C$
B. $ - \dfrac{3}{5}{\tan ^{ - 5/3}}x + 3{\tan ^{1/3}}x + C$
C. $\dfrac{3}{5}{\tan ^{ - 8/3}}x + 3{\tan ^{ - 2/3}}x + C$
Answer
567.3k+ views
Hint: First of all we have to determine the integration $\int {{{\operatorname{Sec} }^{4/3}}} x.\cos e{c^{8/3}}xdx$. First of all we have to change the $\sec x$ and $\cos ecx$ into the $\cos x$ and $\sin x$ respectively. With the help of the formula below:
Formula used:
$\sec x$= $\dfrac{1}{{\operatorname{Cos} x}}$and $\cos ecx$= $\dfrac{1}{{\sin x}}$
Now, we have to multiply by ${\cos ^4}x$ in the numerator and denominator to convert $\sin x$ into $\tan x$ by using the formula below:
Formula used:
$\dfrac{{\operatorname{Sin} x}}{{\operatorname{Cos} x}} = \tan x$
Now, we have to let t be equal to the $\tan x$ and then we have to differentiate this function with respect to t from both sides to get the $dx$ function into the $dt$ function.
Now, finally we have to integrate that $dt$ function with respect to t to obtain the desired answer.
Complete step by step answer:
First of all we have to let the given integration equal to I as mentioned below:
$I = \int {{{\operatorname{Sec} }^{4/3}}} x.\cos e{c^{8/3}}xdx$
Now, we convert $\sec x$ and $\cos ecx$ into the $\cos x$ and $\sin x$ respectively. With the help of the formula below:
Formula used:
$\sec x$= $\dfrac{1}{{\operatorname{Cos} x}}$and $\cos ecx$= $\dfrac{1}{{\sin x}}$
So, We get:
$ \Rightarrow I = \int {\dfrac{1}{{{{\cos }^{4/3}}x.{{\sin }^{8/3}}x}}} dx$
\[
\Rightarrow I = \int {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x({{\cos }^{4/3}}x.{{\sin }^{8/3}}x)}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{\dfrac{{({{\cos }^{4/3}}x.{{\sin }^{8/3}}x)}}{{{{\cos }^4}x}}}}} dx \\
\]Formula used:
$\dfrac{{\operatorname{Sin} x}}{{\operatorname{Cos} x}} = \tan x$
Now, we have simplify the denominator of the above expression and then convert $\dfrac{{\sin x}}{{\cos x}}$ into $\tan x$ with the help of the formula mentioned below:
Formula used:
$\dfrac{{\operatorname{Sin} x}}{{\operatorname{Cos} x}} = \tan x$
\[
\Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{\dfrac{{{{\sin }^{8/3}}x}}{{{{\cos }^{ - 4/3}}x{{\cos }^4}x}}}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{\dfrac{{{{\sin }^{8/3}}x}}{{{{\cos }^{8/3}}x}}}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{{{\tan }^{8/3}}x}}} dx \\
\]
Now, we have to convert ${\sec ^2}x$ into ${\tan ^2}x$ with the help of the formula mentioned below.
Formula used:
\[{\sec ^2}x\]= $1 + {\tan ^2}x$
So, We get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x.(1 + {{\tan }^2}x)}}{{{{\tan }^{8/3}}x}}} dx\]………………………………………….(1)
Now, We have to let $\tan x = t$ and then differentiate this function with respect to t from both sides. We obtained this function as mentioned below:
$
\Rightarrow \tan x = t \\
\Rightarrow \dfrac{d}{{dt}}(\tan x) = \dfrac{d}{{dt}}(t) \\
\Rightarrow {\sec ^2}x\dfrac{{dx}}{{dt}} = 1 \\
\Rightarrow {\sec ^2}xdx = dt \\
$
Now, Put these values in the above mentioned expression (1) in step 4.
\[
\Rightarrow I = \int {\dfrac{{(1 + {\operatorname{t} ^2})}}{{{t^{8/3}}}}} dt \\
\Rightarrow I = \int {(\dfrac{1}{{{t^{8/3}}}}} + \dfrac{{{t^2}}}{{{t^{8/3}}}})dt \\
\Rightarrow I = \int {\dfrac{1}{{{t^{8/3}}}}} dt + \int {\dfrac{{{t^2}}}{{{t^{8/3}}}}dt} \\
\Rightarrow I = \int {{t^{ - 8/3}}} dt + \int {{t^{ - 2/3}}dt} \\
\\
\\
\]
Now, We have integrated the above expression with respect to t.
\[
\Rightarrow I = \dfrac{{{t^{ - 8/3 + 1}}}}{{ - 8/3 + 1}} + \dfrac{{{t^{ - 2/3 + 1}}}}{{ - 2/3 + 1}} + C \\
\Rightarrow I = \dfrac{{{t^{ - 5/3}}}}{{ - 5/3}} + \dfrac{{{t^{1/3}}}}{{1/3}} + C \\
\Rightarrow I = - \dfrac{3}{5}{t^{ - 5/3}} + 3{t^{1/3}} + C....................(2) \\
\\
\]
Now, we have to put $t = \tan x$ in the expression (2)
\[ \Rightarrow I = - \dfrac{3}{5}{\tan ^{ - 5/3}}x + 3{\tan ^{1/3}}x + C\]
The integration of the function $\int {{{\operatorname{Sec} }^{4/3}}} x.\cos e{c^{8/3}}xdx$ is \[ - \dfrac{3}{5}{\tan ^{ - 5/3}}x + 3{\tan ^{1/3}}x + C\] .Therefore option (B) is correct.
Note: To obtain the solution of integration it is necessary that we have changed $\sec x$ and $\cos ecx$ into the $\cos x$ and $\sin x$ respectively with the help of the formulas which is mentioned in the solution hint.
To make the solution easy we have to let the terms of the given integration be some integer so that we can minimize the given integration but we have to determine the differentiation of the term we let.
Formula used:
$\sec x$= $\dfrac{1}{{\operatorname{Cos} x}}$and $\cos ecx$= $\dfrac{1}{{\sin x}}$
Now, we have to multiply by ${\cos ^4}x$ in the numerator and denominator to convert $\sin x$ into $\tan x$ by using the formula below:
Formula used:
$\dfrac{{\operatorname{Sin} x}}{{\operatorname{Cos} x}} = \tan x$
Now, we have to let t be equal to the $\tan x$ and then we have to differentiate this function with respect to t from both sides to get the $dx$ function into the $dt$ function.
Now, finally we have to integrate that $dt$ function with respect to t to obtain the desired answer.
Complete step by step answer:
First of all we have to let the given integration equal to I as mentioned below:
$I = \int {{{\operatorname{Sec} }^{4/3}}} x.\cos e{c^{8/3}}xdx$
Now, we convert $\sec x$ and $\cos ecx$ into the $\cos x$ and $\sin x$ respectively. With the help of the formula below:
Formula used:
$\sec x$= $\dfrac{1}{{\operatorname{Cos} x}}$and $\cos ecx$= $\dfrac{1}{{\sin x}}$
So, We get:
$ \Rightarrow I = \int {\dfrac{1}{{{{\cos }^{4/3}}x.{{\sin }^{8/3}}x}}} dx$
\[
\Rightarrow I = \int {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x({{\cos }^{4/3}}x.{{\sin }^{8/3}}x)}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{\dfrac{{({{\cos }^{4/3}}x.{{\sin }^{8/3}}x)}}{{{{\cos }^4}x}}}}} dx \\
\]Formula used:
$\dfrac{{\operatorname{Sin} x}}{{\operatorname{Cos} x}} = \tan x$
Now, we have simplify the denominator of the above expression and then convert $\dfrac{{\sin x}}{{\cos x}}$ into $\tan x$ with the help of the formula mentioned below:
Formula used:
$\dfrac{{\operatorname{Sin} x}}{{\operatorname{Cos} x}} = \tan x$
\[
\Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{\dfrac{{{{\sin }^{8/3}}x}}{{{{\cos }^{ - 4/3}}x{{\cos }^4}x}}}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{\dfrac{{{{\sin }^{8/3}}x}}{{{{\cos }^{8/3}}x}}}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{{{\tan }^{8/3}}x}}} dx \\
\]
Now, we have to convert ${\sec ^2}x$ into ${\tan ^2}x$ with the help of the formula mentioned below.
Formula used:
\[{\sec ^2}x\]= $1 + {\tan ^2}x$
So, We get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x.(1 + {{\tan }^2}x)}}{{{{\tan }^{8/3}}x}}} dx\]………………………………………….(1)
Now, We have to let $\tan x = t$ and then differentiate this function with respect to t from both sides. We obtained this function as mentioned below:
$
\Rightarrow \tan x = t \\
\Rightarrow \dfrac{d}{{dt}}(\tan x) = \dfrac{d}{{dt}}(t) \\
\Rightarrow {\sec ^2}x\dfrac{{dx}}{{dt}} = 1 \\
\Rightarrow {\sec ^2}xdx = dt \\
$
Now, Put these values in the above mentioned expression (1) in step 4.
\[
\Rightarrow I = \int {\dfrac{{(1 + {\operatorname{t} ^2})}}{{{t^{8/3}}}}} dt \\
\Rightarrow I = \int {(\dfrac{1}{{{t^{8/3}}}}} + \dfrac{{{t^2}}}{{{t^{8/3}}}})dt \\
\Rightarrow I = \int {\dfrac{1}{{{t^{8/3}}}}} dt + \int {\dfrac{{{t^2}}}{{{t^{8/3}}}}dt} \\
\Rightarrow I = \int {{t^{ - 8/3}}} dt + \int {{t^{ - 2/3}}dt} \\
\\
\\
\]
Now, We have integrated the above expression with respect to t.
\[
\Rightarrow I = \dfrac{{{t^{ - 8/3 + 1}}}}{{ - 8/3 + 1}} + \dfrac{{{t^{ - 2/3 + 1}}}}{{ - 2/3 + 1}} + C \\
\Rightarrow I = \dfrac{{{t^{ - 5/3}}}}{{ - 5/3}} + \dfrac{{{t^{1/3}}}}{{1/3}} + C \\
\Rightarrow I = - \dfrac{3}{5}{t^{ - 5/3}} + 3{t^{1/3}} + C....................(2) \\
\\
\]
Now, we have to put $t = \tan x$ in the expression (2)
\[ \Rightarrow I = - \dfrac{3}{5}{\tan ^{ - 5/3}}x + 3{\tan ^{1/3}}x + C\]
The integration of the function $\int {{{\operatorname{Sec} }^{4/3}}} x.\cos e{c^{8/3}}xdx$ is \[ - \dfrac{3}{5}{\tan ^{ - 5/3}}x + 3{\tan ^{1/3}}x + C\] .Therefore option (B) is correct.
Note: To obtain the solution of integration it is necessary that we have changed $\sec x$ and $\cos ecx$ into the $\cos x$ and $\sin x$ respectively with the help of the formulas which is mentioned in the solution hint.
To make the solution easy we have to let the terms of the given integration be some integer so that we can minimize the given integration but we have to determine the differentiation of the term we let.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

