
Determine equation of the circle whose diameter is the chord x+y=1 of the circle ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 4}}$
Answer
612.6k+ views
Hint: To solve this question, we use basic theory of circles. In this first we find the two points on the circle by using given chord equation and then after using these two points we easily Determine equation of the circle whose diameter is the chord x+y=1 of the circle ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 4}}$.
Complete step-by-step answer:
As given in question,
Circle: ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 4}}$ …………….. (1)
Chord: x+y=1
y=1-x ………………(2)
now, put value of y in equation (1), we get
${{\text{x}}^{\text{2}}}{\text{ + (1 - x}}{{\text{)}}^{\text{2}}}{\text{ = 4}}$
${{\text{x}}^{\text{2}}}{\text{ + 1 + }}{{\text{x}}^{\text{2}}}{\text{ - 2x = 4}}$
2${{\text{x}}^{\text{2}}}$-2x-3=0
x= $\dfrac{{{ - b \pm }\sqrt {\text{D}} }}{{{\text{2a}}}}$
by using this we get,
x= $\dfrac{{{1 \pm }\sqrt {\text{7}} }}{{\text{2}}}$ (\[{{\text{x}}_{\text{1}}}{\text{ and }}{{\text{x}}_{\text{2}}}\])
and by putting value of x, we get value of y
y= ${\text{1 - }}\left( {\dfrac{{{1 \pm }\sqrt {\text{7}} }}{{\text{2}}}} \right)$
y= $\dfrac{1}{2} - \dfrac{{\sqrt 7 }}{2}$or $\dfrac{1}{2} + \dfrac{{\sqrt 7 }}{2}$ (\[{{\text{y}}_{\text{1}}}{\text{ and }}{{\text{y}}_{\text{2}}}\])
So, when x= $\dfrac{{{\text{1 + }}\sqrt {\text{7}} }}{{\text{2}}}$ $ \Rightarrow $ y= $\dfrac{1}{2} - \dfrac{{\sqrt 7 }}{2}$
And x= $\dfrac{{{\text{1 - }}\sqrt {\text{7}} }}{{\text{2}}}$$ \Rightarrow $ y= $\dfrac{1}{2} + \dfrac{{\sqrt 7 }}{2}$
Now, equation of new circle passing through points A and B.
$\left( {{\text{x - }}{{\text{x}}_{\text{1}}}} \right){\text{(x - }}{{\text{x}}_{\text{2}}}{\text{) + (y - }}{{\text{y}}_{\text{1}}}{\text{)(y - }}{{\text{y}}_{\text{2}}}{\text{) = }}$0
\[{{\text{x}}^{\text{2}}}{\text{ - x(}}{{\text{x}}_{\text{1}}}{\text{ + }}{{\text{x}}_{\text{2}}}{\text{) + }}{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ - y(}}{{\text{y}}_{\text{1}}}{\text{ + }}{{\text{y}}_{\text{2}}}{\text{) + }}{{\text{y}}_{\text{1}}}{{\text{y}}_{\text{2}}}{\text{ = 0}}\]
Here put all values of x and y, which we calculated above.
\[{{\text{x}}_{\text{1}}}{\text{ + }}{{\text{x}}_{\text{2}}}\]= 1
\[{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}\]= \[\dfrac{{ - 3}}{2}\]
\[{{\text{y}}_{\text{1}}}{\text{ + }}{{\text{y}}_{\text{2}}}\]= 1
\[{{\text{y}}_{\text{1}}}{{\text{y}}_{\text{2}}}\]= \[\dfrac{{ - 3}}{2}\]
Now, we get:
\[{{\text{x}}^{\text{2}}}{\text{ - x(1) + }}\left( {\dfrac{{ - 3}}{2}} \right){\text{ + }}{{\text{y}}^{\text{2}}}{\text{ - y(1) + }}\left( {\dfrac{{ - 3}}{2}} \right){\text{ = 0}}\]
\[{\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 2x - 3 + 2}}{{\text{y}}^{\text{2}}}{\text{ - 2y - 3 = 0}}\]
Therefore, equation of the circle whose diameter is the chord x+y=1 of the circle ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 4}}$ is \[{\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 2x - 3 + 2}}{{\text{y}}^{\text{2}}}{\text{ - 2y - 3 = 0}}\].
Note- A chord is a line passing from one point to another on the circumference of a circle. Diameter is a chord that passes through the centre. The perimeter of a circle is known as the circumference. Chords equal in length subtend equal angles at centre. Similarly, the chords are equal if the angles subtended by chords are equal at the centre. The perpendicular drawn on a chord from the centre bisects the chord.
Complete step-by-step answer:
As given in question,
Circle: ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 4}}$ …………….. (1)
Chord: x+y=1
y=1-x ………………(2)
now, put value of y in equation (1), we get
${{\text{x}}^{\text{2}}}{\text{ + (1 - x}}{{\text{)}}^{\text{2}}}{\text{ = 4}}$
${{\text{x}}^{\text{2}}}{\text{ + 1 + }}{{\text{x}}^{\text{2}}}{\text{ - 2x = 4}}$
2${{\text{x}}^{\text{2}}}$-2x-3=0
x= $\dfrac{{{ - b \pm }\sqrt {\text{D}} }}{{{\text{2a}}}}$
by using this we get,
x= $\dfrac{{{1 \pm }\sqrt {\text{7}} }}{{\text{2}}}$ (\[{{\text{x}}_{\text{1}}}{\text{ and }}{{\text{x}}_{\text{2}}}\])
and by putting value of x, we get value of y
y= ${\text{1 - }}\left( {\dfrac{{{1 \pm }\sqrt {\text{7}} }}{{\text{2}}}} \right)$
y= $\dfrac{1}{2} - \dfrac{{\sqrt 7 }}{2}$or $\dfrac{1}{2} + \dfrac{{\sqrt 7 }}{2}$ (\[{{\text{y}}_{\text{1}}}{\text{ and }}{{\text{y}}_{\text{2}}}\])
So, when x= $\dfrac{{{\text{1 + }}\sqrt {\text{7}} }}{{\text{2}}}$ $ \Rightarrow $ y= $\dfrac{1}{2} - \dfrac{{\sqrt 7 }}{2}$
And x= $\dfrac{{{\text{1 - }}\sqrt {\text{7}} }}{{\text{2}}}$$ \Rightarrow $ y= $\dfrac{1}{2} + \dfrac{{\sqrt 7 }}{2}$
Now, equation of new circle passing through points A and B.
$\left( {{\text{x - }}{{\text{x}}_{\text{1}}}} \right){\text{(x - }}{{\text{x}}_{\text{2}}}{\text{) + (y - }}{{\text{y}}_{\text{1}}}{\text{)(y - }}{{\text{y}}_{\text{2}}}{\text{) = }}$0
\[{{\text{x}}^{\text{2}}}{\text{ - x(}}{{\text{x}}_{\text{1}}}{\text{ + }}{{\text{x}}_{\text{2}}}{\text{) + }}{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ - y(}}{{\text{y}}_{\text{1}}}{\text{ + }}{{\text{y}}_{\text{2}}}{\text{) + }}{{\text{y}}_{\text{1}}}{{\text{y}}_{\text{2}}}{\text{ = 0}}\]
Here put all values of x and y, which we calculated above.
\[{{\text{x}}_{\text{1}}}{\text{ + }}{{\text{x}}_{\text{2}}}\]= 1
\[{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}\]= \[\dfrac{{ - 3}}{2}\]
\[{{\text{y}}_{\text{1}}}{\text{ + }}{{\text{y}}_{\text{2}}}\]= 1
\[{{\text{y}}_{\text{1}}}{{\text{y}}_{\text{2}}}\]= \[\dfrac{{ - 3}}{2}\]
Now, we get:
\[{{\text{x}}^{\text{2}}}{\text{ - x(1) + }}\left( {\dfrac{{ - 3}}{2}} \right){\text{ + }}{{\text{y}}^{\text{2}}}{\text{ - y(1) + }}\left( {\dfrac{{ - 3}}{2}} \right){\text{ = 0}}\]
\[{\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 2x - 3 + 2}}{{\text{y}}^{\text{2}}}{\text{ - 2y - 3 = 0}}\]
Therefore, equation of the circle whose diameter is the chord x+y=1 of the circle ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = 4}}$ is \[{\text{2}}{{\text{x}}^{\text{2}}}{\text{ - 2x - 3 + 2}}{{\text{y}}^{\text{2}}}{\text{ - 2y - 3 = 0}}\].
Note- A chord is a line passing from one point to another on the circumference of a circle. Diameter is a chord that passes through the centre. The perimeter of a circle is known as the circumference. Chords equal in length subtend equal angles at centre. Similarly, the chords are equal if the angles subtended by chords are equal at the centre. The perpendicular drawn on a chord from the centre bisects the chord.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

