
What is the derivative of $ y = \cos \left( {xy} \right) $ ?
Answer
518.7k+ views
Hint: In the given problem, we are required to differentiate $ y = \cos \left( {xy} \right) $ with respect to x. Since, $ y = \cos \left( {xy} \right) $ is an implicit function, so we will have to differentiate the function $ y = \cos \left( {xy} \right) $ with the implicit method of differentiation. So, differentiation of $ y = \cos \left( {xy} \right) $ with respect to x will be done layer by layer using the chain rule of differentiation as in the given function, we cannot isolate the variables x and y.
Complete step by step solution:
Consider, $ y = \cos \left( {xy} \right) $ .
Differentiating both sides of the equation with respect to x, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {\cos \left( {xy} \right)} \right) $
Using chain rule of differentiation, we will first differentiate $ \cos \left( {xy} \right) $ with respect to $ xy $ and then differentiate $ xy $ with respect to x, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{d\left( {xy} \right)}}\left( {\cos \left( {xy} \right)} \right) \times \dfrac{d}{{dx}}\left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \sin \left( {xy} \right) \times \dfrac{d}{{dx}}\left( {xy} \right) $
Now, using product rule of differentiation, we have, $ \dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) $ . So, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \sin \left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y\dfrac{d}{{dx}}\left( x \right)} \right] $
Now, we know that the derivative of x with respect to x is $ 1 $ . So, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \sin \left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y} \right] $
Now, opening the brackets, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - x\sin \left( {xy} \right)\dfrac{{dy}}{{dx}} - y\sin \left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}} + x\sin \left( {xy} \right)\dfrac{{dy}}{{dx}} = - y\sin \left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 + x\sin \left( {xy} \right)} \right) = - y\sin \left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - y\sin \left( {xy} \right)}}{{1 + x\sin \left( {xy} \right)}} $
Therefore, we get the derivative of $ y = \cos \left( {xy} \right) $ as $ \dfrac{{ - y\sin \left( {xy} \right)}}{{1 + x\sin \left( {xy} \right)}} $.
Note: Implicit functions are those functions that involve two variables and the two variables are not separable and cannot be isolated from each other. Hence, we have to follow a certain method to differentiate such functions and also apply the chain rule of differentiation. We must remember the simple derivatives of basic functions to solve such problems.
Complete step by step solution:
Consider, $ y = \cos \left( {xy} \right) $ .
Differentiating both sides of the equation with respect to x, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {\cos \left( {xy} \right)} \right) $
Using chain rule of differentiation, we will first differentiate $ \cos \left( {xy} \right) $ with respect to $ xy $ and then differentiate $ xy $ with respect to x, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{d\left( {xy} \right)}}\left( {\cos \left( {xy} \right)} \right) \times \dfrac{d}{{dx}}\left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \sin \left( {xy} \right) \times \dfrac{d}{{dx}}\left( {xy} \right) $
Now, using product rule of differentiation, we have, $ \dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) $ . So, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \sin \left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y\dfrac{d}{{dx}}\left( x \right)} \right] $
Now, we know that the derivative of x with respect to x is $ 1 $ . So, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \sin \left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y} \right] $
Now, opening the brackets, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - x\sin \left( {xy} \right)\dfrac{{dy}}{{dx}} - y\sin \left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}} + x\sin \left( {xy} \right)\dfrac{{dy}}{{dx}} = - y\sin \left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 + x\sin \left( {xy} \right)} \right) = - y\sin \left( {xy} \right) $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - y\sin \left( {xy} \right)}}{{1 + x\sin \left( {xy} \right)}} $
Therefore, we get the derivative of $ y = \cos \left( {xy} \right) $ as $ \dfrac{{ - y\sin \left( {xy} \right)}}{{1 + x\sin \left( {xy} \right)}} $.
Note: Implicit functions are those functions that involve two variables and the two variables are not separable and cannot be isolated from each other. Hence, we have to follow a certain method to differentiate such functions and also apply the chain rule of differentiation. We must remember the simple derivatives of basic functions to solve such problems.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

