
What is the derivative of \[{\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\]?
Answer
493.5k+ views
Hint: Let \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\]. To find the derivative of \[{\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\], we will first take natural logarithm on both the sides then using the chain rule and product rule of differentiation we will differentiate both the side and at last we will substitute \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\] wherever required to find the final result.
Complete step by step answer:
This problem deals with implicit differentiation. Implicit differentiation is done by differentiating an implicit equation with respect to variable say \[x\] and while treating other variables as unspecified functions of \[x\].
Let \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\].
We have to find the derivative of \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\].
For this we will take natural logarithms on both sides.
On taking natural logarithm on both the sides, we get
\[ \Rightarrow \ln y = \ln \left[ {{{\left( {\sin x} \right)}^{{{\cos }^{ - 1}}x}}} \right]\]
Using the Power rule of logarithm i.e., \[{\log _b}\left( {{m^p}} \right) = p{\log _b}m\] we can write
\[ \Rightarrow \ln y = \left( {{{\cos }^{ - 1}}x} \right)\left( {\ln \left( {\sin x} \right)} \right)\]
Differentiating using chain rule of differentiation i.e., \[\dfrac{d}{dx}\left[ {f\left( {g\left( x \right)} \right)} \right] = f \left( {{g'}\left( x \right)} \right){g'}\left( x \right)\] on left hand side and chain rule and product rule of differentiation i.e., \[\dfrac{d}{dx}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right){g'}\left( x \right) + g\left( x \right){f'}\left( x \right)\] on the right hand side, we get
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {{{\cos }^{ - 1}}x} \right) \times \dfrac{d}{{dx}}\left( {\ln \left( {\sin x} \right)} \right) + \ln \left( {\sin x} \right) \times \dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {{{\cos }^{ - 1}}x} \right) \times \left( {\dfrac{1}{{\sin x}} \times \dfrac{d}{{dx}}\left( {\sin x} \right)} \right) + \ln \left( {\sin x} \right) \times \left( { - \dfrac{1}{{\sqrt {1 - {x^2}} }}} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {{{\cos }^{ - 1}}x} \right) \times \left( {\dfrac{{\cos x}}{{\sin x}}} \right) - \dfrac{{\ln \left( {\sin x} \right)}}{{\sqrt {1 - {x^2}} }}\]
On taking LCM, we get
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)}}{{\sqrt {1 - {x^2}} }}\]
Multiplying both the sides by \[y\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{y\left( {\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)} \right)}}{{\sqrt {1 - {x^2}} }}\]
Putting \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {\sin x} \right)}^{{{\cos }^{ - 1}}x}}\left( {\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)} \right)}}{{\sqrt {1 - {x^2}} }}\]
Therefore, the derivative of \[{\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\] is \[\dfrac{{{{\left( {\sin x} \right)}^{{{\cos }^{ - 1}}x}}\left( {\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)} \right)}}{{\sqrt {1 - {x^2}} }}\].
Note:
This is a case of differentiation of implicit function i.e., we are not able to isolate the dependent variable in an equation. Both dependent and independent variables are present in this type of function. Also, note that the technique of implicit differentiation allows one to find the derivative of \[y\] with respect to \[x\] without having to solve the given equation for \[y\].
Complete step by step answer:
This problem deals with implicit differentiation. Implicit differentiation is done by differentiating an implicit equation with respect to variable say \[x\] and while treating other variables as unspecified functions of \[x\].
Let \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\].
We have to find the derivative of \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\].
For this we will take natural logarithms on both sides.
On taking natural logarithm on both the sides, we get
\[ \Rightarrow \ln y = \ln \left[ {{{\left( {\sin x} \right)}^{{{\cos }^{ - 1}}x}}} \right]\]
Using the Power rule of logarithm i.e., \[{\log _b}\left( {{m^p}} \right) = p{\log _b}m\] we can write
\[ \Rightarrow \ln y = \left( {{{\cos }^{ - 1}}x} \right)\left( {\ln \left( {\sin x} \right)} \right)\]
Differentiating using chain rule of differentiation i.e., \[\dfrac{d}{dx}\left[ {f\left( {g\left( x \right)} \right)} \right] = f \left( {{g'}\left( x \right)} \right){g'}\left( x \right)\] on left hand side and chain rule and product rule of differentiation i.e., \[\dfrac{d}{dx}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right){g'}\left( x \right) + g\left( x \right){f'}\left( x \right)\] on the right hand side, we get
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {{{\cos }^{ - 1}}x} \right) \times \dfrac{d}{{dx}}\left( {\ln \left( {\sin x} \right)} \right) + \ln \left( {\sin x} \right) \times \dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {{{\cos }^{ - 1}}x} \right) \times \left( {\dfrac{1}{{\sin x}} \times \dfrac{d}{{dx}}\left( {\sin x} \right)} \right) + \ln \left( {\sin x} \right) \times \left( { - \dfrac{1}{{\sqrt {1 - {x^2}} }}} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {{{\cos }^{ - 1}}x} \right) \times \left( {\dfrac{{\cos x}}{{\sin x}}} \right) - \dfrac{{\ln \left( {\sin x} \right)}}{{\sqrt {1 - {x^2}} }}\]
On taking LCM, we get
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)}}{{\sqrt {1 - {x^2}} }}\]
Multiplying both the sides by \[y\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{y\left( {\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)} \right)}}{{\sqrt {1 - {x^2}} }}\]
Putting \[y = {\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {\sin x} \right)}^{{{\cos }^{ - 1}}x}}\left( {\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)} \right)}}{{\sqrt {1 - {x^2}} }}\]
Therefore, the derivative of \[{\left( {\sin x} \right)^{{{\cos }^{ - 1}}x}}\] is \[\dfrac{{{{\left( {\sin x} \right)}^{{{\cos }^{ - 1}}x}}\left( {\sqrt {1 - {x^2}} \cot x{{\cos }^{ - 1}}x - \ln (\sin x)} \right)}}{{\sqrt {1 - {x^2}} }}\].
Note:
This is a case of differentiation of implicit function i.e., we are not able to isolate the dependent variable in an equation. Both dependent and independent variables are present in this type of function. Also, note that the technique of implicit differentiation allows one to find the derivative of \[y\] with respect to \[x\] without having to solve the given equation for \[y\].
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

