
What is the derivative of $f\left( x \right) = {\tan ^{ - 1}}\left( x \right)$ ?
Answer
497.1k+ views
Hint: We have to deal with an inverse trigonometric function in this question. As the name suggests these are inverse trigonometric functions with restricted domain. The derivatives for standard anti-trigonometric functions should be kept in mind to tackle this kind of questions easily. Some of the derivatives are given as; $\left( 1 \right)\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}$ . $\left( 2 \right)\dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right) = - \dfrac{1}{{\sqrt {1 - {x^2}} }}$ . $\left( 3 \right)\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}$ . $\left( 4 \right)\dfrac{d}{{dx}}\left( {{{\cot }^{ - 1}}x} \right) = - \dfrac{1}{{1 + {x^2}}}$ . $\left( 5 \right)\dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{\left| x \right|\sqrt {{x^2} - 1} }}$ . $\left( 6 \right)\dfrac{d}{{dx}}\left( {{{\operatorname{cosec} }^{ - 1}}x} \right) = - \dfrac{1}{{\left| x \right|\sqrt {{x^2} - 1} }}$ .
Complete step by step answer:
Let $y = {\tan ^{ - 1}}x{\text{ }}......\left( 1 \right)$
Multiplying by tangent function on both sides, we get;
$ \Rightarrow \tan y = \tan \left( {{{\tan }^{ - 1}}x} \right)$
We know that tangent function and its inverse function cancels each other, therefore we get;
$ \Rightarrow x = \tan y{\text{ }}......\left( 2 \right)$
Differentiating equation w.r.t. $x$ ;
$ \Rightarrow 1 = {\sec ^2}y \times \dfrac{{dy}}{{dx}}{\text{ }}\left( {\because \dfrac{d}{{dx}}\left( {\tan x} \right) = {{\sec }^2}x} \right)$
Rearranging the above equation, we get;
$ \Rightarrow \dfrac{1}{{{{\sec }^2}y}} = \dfrac{{dy}}{{dx}}$
We know the relation between tangent function and secant function;
$\left( {\because {{\sec }^2}x - {{\tan }^2}x = 1} \right)$
$\therefore {\sec ^2}x = 1 + {\tan ^2}x$
Therefore, replacing the value of ${\sec ^2}y$ from the above property;
$ \Rightarrow \dfrac{1}{{1 + {{\tan }^2}y}} = \dfrac{{dy}}{{dx}}$
From equation $\left( 2 \right)$ , we know that $x = \tan y$ ;
$ \Rightarrow \dfrac{1}{{1 + {x^2}}} = \dfrac{{dy}}{{dx}}$
And also if $x = \tan y$, then $y = {\tan ^{ - 1}}x$ ;
So, finally we get; $\dfrac{1}{{1 + {x^2}}} = \dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right)$
Therefore the derivative of ${\tan ^{ - 1}}x$ is $\dfrac{1}{{1 + {x^2}}}$ .
We should also be familiar with the concept of domain and range here. The domain of a function represents the complete set of possible values that the independent variable can take and for which the function can exist. While the range represents the set of output values of the dependent variable after putting the values of the domain. Therefore the domain and range of a function are like possible inputs and outputs for a given function.
Note: Trigonometric and inverse trigonometric functions are differentiable only in their respective domain. Let us see some properties of inverse trigonometric functions here. $\left( 1 \right)$ The function ${\sin ^{ - 1}}x$ should not be confused with ${\left( {\sin x} \right)^{ - 1}}$ , since ${\left( {\sin x} \right)^{ - 1}} = \dfrac{1}{{\sin x}}$ and this is true for all other trigonometric identities as well. $\left( 2 \right)$ Some of the properties of inverse trigonometric functions are stated as: $\left( a \right){\sin ^{ - 1}}\dfrac{1}{x} = \cos e{c^{ - 1}}x$ . $\left( b \right){\cos ^{ - 1}}\dfrac{1}{x} = {\sec ^{ - 1}}x$ . $\left( c \right){\tan ^{ - 1}}\dfrac{1}{x} = {\cot ^{ - 1}}x$ . $\left( d \right){\sin ^{ - 1}}\left( { - x} \right) = - {\sin ^{ - 1}}x$ (since sine is an odd function). $\left( e \right){\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}x$ . $\left( d \right){\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$ .
Complete step by step answer:
Let $y = {\tan ^{ - 1}}x{\text{ }}......\left( 1 \right)$
Multiplying by tangent function on both sides, we get;
$ \Rightarrow \tan y = \tan \left( {{{\tan }^{ - 1}}x} \right)$
We know that tangent function and its inverse function cancels each other, therefore we get;
$ \Rightarrow x = \tan y{\text{ }}......\left( 2 \right)$
Differentiating equation w.r.t. $x$ ;
$ \Rightarrow 1 = {\sec ^2}y \times \dfrac{{dy}}{{dx}}{\text{ }}\left( {\because \dfrac{d}{{dx}}\left( {\tan x} \right) = {{\sec }^2}x} \right)$
Rearranging the above equation, we get;
$ \Rightarrow \dfrac{1}{{{{\sec }^2}y}} = \dfrac{{dy}}{{dx}}$
We know the relation between tangent function and secant function;
$\left( {\because {{\sec }^2}x - {{\tan }^2}x = 1} \right)$
$\therefore {\sec ^2}x = 1 + {\tan ^2}x$
Therefore, replacing the value of ${\sec ^2}y$ from the above property;
$ \Rightarrow \dfrac{1}{{1 + {{\tan }^2}y}} = \dfrac{{dy}}{{dx}}$
From equation $\left( 2 \right)$ , we know that $x = \tan y$ ;
$ \Rightarrow \dfrac{1}{{1 + {x^2}}} = \dfrac{{dy}}{{dx}}$
And also if $x = \tan y$, then $y = {\tan ^{ - 1}}x$ ;
So, finally we get; $\dfrac{1}{{1 + {x^2}}} = \dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right)$
Therefore the derivative of ${\tan ^{ - 1}}x$ is $\dfrac{1}{{1 + {x^2}}}$ .
We should also be familiar with the concept of domain and range here. The domain of a function represents the complete set of possible values that the independent variable can take and for which the function can exist. While the range represents the set of output values of the dependent variable after putting the values of the domain. Therefore the domain and range of a function are like possible inputs and outputs for a given function.
Note: Trigonometric and inverse trigonometric functions are differentiable only in their respective domain. Let us see some properties of inverse trigonometric functions here. $\left( 1 \right)$ The function ${\sin ^{ - 1}}x$ should not be confused with ${\left( {\sin x} \right)^{ - 1}}$ , since ${\left( {\sin x} \right)^{ - 1}} = \dfrac{1}{{\sin x}}$ and this is true for all other trigonometric identities as well. $\left( 2 \right)$ Some of the properties of inverse trigonometric functions are stated as: $\left( a \right){\sin ^{ - 1}}\dfrac{1}{x} = \cos e{c^{ - 1}}x$ . $\left( b \right){\cos ^{ - 1}}\dfrac{1}{x} = {\sec ^{ - 1}}x$ . $\left( c \right){\tan ^{ - 1}}\dfrac{1}{x} = {\cot ^{ - 1}}x$ . $\left( d \right){\sin ^{ - 1}}\left( { - x} \right) = - {\sin ^{ - 1}}x$ (since sine is an odd function). $\left( e \right){\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}x$ . $\left( d \right){\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$ .
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

