
What is the derivative of $\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$ ?
Answer
483.6k+ views
Hint:In the given problem, we are required to differentiate $\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$ with respect to x. Since, $\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$ is a rational trigonometric function in variable x, so we will have to apply quotient rule of differentiation in the process of differentiating $\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$.Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly.
Complete step by step answer:
Let us assume the function to be $f(x)$. Then, we have,
$f(x) = \dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$
Differentiating both sides with respect to x,
$ \Rightarrow \dfrac{d}{{dx}}f(x) = \dfrac{d}{{dx}}\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]$
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left( {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\dfrac{d}{{dx}}\left( {\sin x + \cos x} \right) - \left( {\sin x + \cos x} \right)\dfrac{d}{{dx}}\left( {\sin x - \cos x} \right)}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Now, separating the derivatives of the functions, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {\sin x} \right) + \dfrac{d}{{dx}}\left( {\cos x} \right)} \right] - \left( {\sin x + \cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {\sin x} \right) - \dfrac{d}{{dx}}\left( {\cos x} \right)} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Now, we know that the derivative of $\sin x$with respect to x is $\cos x$ and $\cos x$ with respect to x is $ - \sin x$. Substituting these derivatives, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\cos x + \left( { - \sin x} \right)} \right] - \left( {\sin x + \cos x} \right)\left[ {\cos x - \left( { - \sin x} \right)} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\cos x - \sin x} \right] - \left( {\sin x + \cos x} \right)\left[ {\cos x + \sin x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - {{\left( {\sin x - \cos x} \right)}^2} - {{\left( {\sin x + \cos x} \right)}^2}}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Now, using the algebraic identities ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x} \right] - \left[ {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {1 - 2\sin x\cos x} \right] - \left[ {1 + 2\sin x\cos x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Opening the brackets and simplifying the expression,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1 + 2\sin x\cos x - 1 - 2\sin x\cos x}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Cancelling the like terms with opposite signs, we get,
\[ \therefore \dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Hence, the derivative of $\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$ with respect to x is \[\dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\].
Note:We can also further simplify the derivative expression as follows:
\[ \Rightarrow \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x}}\]
The whole square term is expanded using the algebraic identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$,
\[ \Rightarrow \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{1 - 2\sin x\cos x}}\]
Now, we use the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$. We also know the double angle formula for sine as $\sin 2x = 2\sin x\cos x$. So, we get,
\[ \therefore \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{1 - \sin 2x}} = \dfrac{2}{{\sin 2x - 1}}\]
The simplified form for the derivative of the given expression is \[\dfrac{2}{{\sin 2x - 1}}\].
Complete step by step answer:
Let us assume the function to be $f(x)$. Then, we have,
$f(x) = \dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$
Differentiating both sides with respect to x,
$ \Rightarrow \dfrac{d}{{dx}}f(x) = \dfrac{d}{{dx}}\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]$
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left( {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\dfrac{d}{{dx}}\left( {\sin x + \cos x} \right) - \left( {\sin x + \cos x} \right)\dfrac{d}{{dx}}\left( {\sin x - \cos x} \right)}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Now, separating the derivatives of the functions, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {\sin x} \right) + \dfrac{d}{{dx}}\left( {\cos x} \right)} \right] - \left( {\sin x + \cos x} \right)\left[ {\dfrac{d}{{dx}}\left( {\sin x} \right) - \dfrac{d}{{dx}}\left( {\cos x} \right)} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Now, we know that the derivative of $\sin x$with respect to x is $\cos x$ and $\cos x$ with respect to x is $ - \sin x$. Substituting these derivatives, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\cos x + \left( { - \sin x} \right)} \right] - \left( {\sin x + \cos x} \right)\left[ {\cos x - \left( { - \sin x} \right)} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {\sin x - \cos x} \right)\left[ {\cos x - \sin x} \right] - \left( {\sin x + \cos x} \right)\left[ {\cos x + \sin x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - {{\left( {\sin x - \cos x} \right)}^2} - {{\left( {\sin x + \cos x} \right)}^2}}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Now, using the algebraic identities ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x} \right] - \left[ {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {1 - 2\sin x\cos x} \right] - \left[ {1 + 2\sin x\cos x} \right]}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Opening the brackets and simplifying the expression,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 1 + 2\sin x\cos x - 1 - 2\sin x\cos x}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Cancelling the like terms with opposite signs, we get,
\[ \therefore \dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\]
Hence, the derivative of $\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}$ with respect to x is \[\dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\].
Note:We can also further simplify the derivative expression as follows:
\[ \Rightarrow \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{{{\sin }^2}x - 2\sin x\cos x + {{\cos }^2}x}}\]
The whole square term is expanded using the algebraic identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$,
\[ \Rightarrow \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{1 - 2\sin x\cos x}}\]
Now, we use the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$. We also know the double angle formula for sine as $\sin 2x = 2\sin x\cos x$. So, we get,
\[ \therefore \dfrac{{ - 2}}{{{{\left( {\sin x - \cos x} \right)}^2}}} = \dfrac{{ - 2}}{{1 - \sin 2x}} = \dfrac{2}{{\sin 2x - 1}}\]
The simplified form for the derivative of the given expression is \[\dfrac{2}{{\sin 2x - 1}}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

