
What is the derivative of $ \arctan \left( {2x} \right) $ ?
Answer
493.5k+ views
Hint: In order to find the value of $ \arctan \left( {2x} \right) $ , we should know what $ \arctan $ is. $ \arctan $ stands for arctangent. Arctangent is nothing but the inverse of the tangent function of $ x $ , when $ x $ is real. For example, when the tangent of $ y $ is equal to $ x $ that is $ \tan y = x $ . Then $ \arctan x $ is equal to the inverse tangent function, that is $ \arctan x = {\tan ^{ - 1}}x = y $ .
Complete step-by-step answer:
We are given with the value $ \arctan \left( {2x} \right) $ , let it be $ y $ that gives $ y = \arctan \left( {2x} \right) $ .
Considering the value of $ 2x $ to be $ u $ , which gives:
$ 2x = u $
Differentiating the above equation with respect to $ u $ and we get:
$ 2\dfrac{{dx}}{{du}} = \dfrac{{du}}{{du}} $
Since, we know that $ \dfrac{{du}}{{du}} = 1 $ , so:
$ 2\dfrac{{dx}}{{du}} = 1 $
Dividing both the sides by $ 2 $ :
$ \dfrac{{2\dfrac{{dx}}{{du}}}}{2} = \dfrac{1}{2} $
$ \Rightarrow \dfrac{{dx}}{{du}} = \dfrac{1}{2} $ ……(1)
Substituting $ u = 2x $ in the above equation $ y = \arctan \left( {2x} \right) $ , we get:
$ y = \arctan \left( u \right) $
Since, we know that $ \arctan $ is nothing but the inverse of the tangent function, so the $ \arctan $ can be written as $ ta{n^{ - 1}} $ .
So, from this we are writing our equation as:
$ y = ta{n^{ - 1}}\left( u \right) $
Now, for the derivative of the function, derivating both the sides of the equation with respect to $ u $ , we get:
$ \dfrac{{dy}}{{du}} = \dfrac{{d\left( {{{\tan }^{ - 1}}u} \right)}}{{du}} $
From the trigonometric formulas for derivation, we know that:
$ \dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}} $
So, from this we get:
$ \dfrac{{dy}}{{du}} = \dfrac{{d\left( {{{\tan }^{ - 1}}u} \right)}}{{du}} $
$ \Rightarrow \dfrac{{dy}}{{du}} = \dfrac{1}{{1 + {u^2}}} $ ………….(2)
Now, dividing equation (2) by (1), and we get:
$ \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}} = \dfrac{{\dfrac{1}{{1 + {u^2}}}}}{{\dfrac{1}{2}}} $
Since, on the left side the denominators are same, so cancelling them out and multiplying $ 2 $ to the numerator and denominator of right side:
$ \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{1 + {u^2}}} \times 2}}{{\dfrac{1}{2} \times 2}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{2}{{1 + {u^2}}} $
Substituting the value of $ u $ that is $ 2x = u $ in the above equation, and we get:
$ \dfrac{{dy}}{{dx}} = \dfrac{2}{{1 + {{\left( {2x} \right)}^2}}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + 4{x^2}}} $
Since, $ y = \arctan \left( {2x} \right) $ , therefore $ \dfrac{{d\left( {\arctan \left( {2x} \right)} \right)}}{{dx}} = \dfrac{1}{{1 + 4{x^2}}} $ .
Hence, the derivative of $ \arctan \left( {2x} \right) = \dfrac{1}{{1 + 4{x^2}}} $ .
Note: The method used above to consider $ 2x = u $ , then differentiating them separately with respect to $ u $ , then for $ {\tan ^{ - 1}}u $ is known as the chain rule. It can also be written as $ \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}} $ .
It’s important to remember the basic formula of trigonometry and trigonometric identities to solve these kinds of questions.
Complete step-by-step answer:
We are given with the value $ \arctan \left( {2x} \right) $ , let it be $ y $ that gives $ y = \arctan \left( {2x} \right) $ .
Considering the value of $ 2x $ to be $ u $ , which gives:
$ 2x = u $
Differentiating the above equation with respect to $ u $ and we get:
$ 2\dfrac{{dx}}{{du}} = \dfrac{{du}}{{du}} $
Since, we know that $ \dfrac{{du}}{{du}} = 1 $ , so:
$ 2\dfrac{{dx}}{{du}} = 1 $
Dividing both the sides by $ 2 $ :
$ \dfrac{{2\dfrac{{dx}}{{du}}}}{2} = \dfrac{1}{2} $
$ \Rightarrow \dfrac{{dx}}{{du}} = \dfrac{1}{2} $ ……(1)
Substituting $ u = 2x $ in the above equation $ y = \arctan \left( {2x} \right) $ , we get:
$ y = \arctan \left( u \right) $
Since, we know that $ \arctan $ is nothing but the inverse of the tangent function, so the $ \arctan $ can be written as $ ta{n^{ - 1}} $ .
So, from this we are writing our equation as:
$ y = ta{n^{ - 1}}\left( u \right) $
Now, for the derivative of the function, derivating both the sides of the equation with respect to $ u $ , we get:
$ \dfrac{{dy}}{{du}} = \dfrac{{d\left( {{{\tan }^{ - 1}}u} \right)}}{{du}} $
From the trigonometric formulas for derivation, we know that:
$ \dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}} $
So, from this we get:
$ \dfrac{{dy}}{{du}} = \dfrac{{d\left( {{{\tan }^{ - 1}}u} \right)}}{{du}} $
$ \Rightarrow \dfrac{{dy}}{{du}} = \dfrac{1}{{1 + {u^2}}} $ ………….(2)
Now, dividing equation (2) by (1), and we get:
$ \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}} = \dfrac{{\dfrac{1}{{1 + {u^2}}}}}{{\dfrac{1}{2}}} $
Since, on the left side the denominators are same, so cancelling them out and multiplying $ 2 $ to the numerator and denominator of right side:
$ \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{1 + {u^2}}} \times 2}}{{\dfrac{1}{2} \times 2}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{2}{{1 + {u^2}}} $
Substituting the value of $ u $ that is $ 2x = u $ in the above equation, and we get:
$ \dfrac{{dy}}{{dx}} = \dfrac{2}{{1 + {{\left( {2x} \right)}^2}}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + 4{x^2}}} $
Since, $ y = \arctan \left( {2x} \right) $ , therefore $ \dfrac{{d\left( {\arctan \left( {2x} \right)} \right)}}{{dx}} = \dfrac{1}{{1 + 4{x^2}}} $ .
Hence, the derivative of $ \arctan \left( {2x} \right) = \dfrac{1}{{1 + 4{x^2}}} $ .
Note: The method used above to consider $ 2x = u $ , then differentiating them separately with respect to $ u $ , then for $ {\tan ^{ - 1}}u $ is known as the chain rule. It can also be written as $ \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}} $ .
It’s important to remember the basic formula of trigonometry and trigonometric identities to solve these kinds of questions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

