
Define the focal length of a spherical mirror. A concave mirror produces $3$ times a real image of an object placed at a distance of $10\,cm$ in front of it. Find the radius of curvature of the mirror.
Answer
565.5k+ views
Hint
Focal length of the spherical mirror is the distance from the pole of the mirror to the focus point of the object. The radius of the curvature of the mirror is determined by the two formulas, one is magnification formula and other is focal length formula.
The magnification of the mirror is given by,
$\Rightarrow m = \dfrac{{ - v}}{u}$
Where, $m$ is the magnification, $v$ distance of the image and $u$ is the distance of the object.
The focal length of the mirror is given by,
$\Rightarrow \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
Where, $f$ is the focal length, $v$ distance of the image and $u$ is the distance of the object.
Complete step by step answer
Given that,
The magnification of the mirror is, $m = 3$,
The distance of the object of a real image is, $u = 10\,cm$.
Now,
The magnification of the mirror is given by,
$\Rightarrow m = \dfrac{{ - v}}{u}\,.....................\left( 1 \right)$
By substituting the magnification and the distance of the object value in the above equation (1), then the above equation is written as,
$\Rightarrow 3 = \dfrac{{ - v}}{{10}}$
By keeping the term $v$ in one side and the other terms in other side, then
$\Rightarrow - v = 3 \times 10$
On multiplying the terms in the above equation, then
$\Rightarrow v = - 30\,cm$
The above equation is written as,
$\Rightarrow v = 30\,cm$
Now,
The focal length of the mirror is given by,
$\Rightarrow \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}\,...............\left( 2 \right)$
By substituting the distance of the object and the distance of the image in the above equation, then
$\Rightarrow \dfrac{1}{f} = \dfrac{1}{{30}} + \dfrac{1}{{10}}$
By cross multiplying the terms in RHS, then
$\Rightarrow \dfrac{1}{f} = \dfrac{{10 + 30}}{{30 \times 10}}$
On further simplification, then
$\Rightarrow \dfrac{1}{f} = \dfrac{{40}}{{300}}$
By taking reciprocal on both sides, then
$\Rightarrow f = \dfrac{{300}}{{40}}$
On dividing the above equation, then
$\Rightarrow f = 7.5\,cm$
The radius of curvature is equal to the two times of the focal length.
$\Rightarrow R = 2f$
By substituting the focal length value in the above equation, then
$\Rightarrow R = 2 \times 7.5$
On multiplying the above equation, then
$\Rightarrow R = 15\,cm$
The radius of the curvature is $15\,cm$.
Note
The negative values show that the concave mirror reduces the distance of the image focused. The main function of the concave mirror is to decrease the length of the image focused. And the radius of the curvature is equal to the two times of the focal length.
Focal length of the spherical mirror is the distance from the pole of the mirror to the focus point of the object. The radius of the curvature of the mirror is determined by the two formulas, one is magnification formula and other is focal length formula.
The magnification of the mirror is given by,
$\Rightarrow m = \dfrac{{ - v}}{u}$
Where, $m$ is the magnification, $v$ distance of the image and $u$ is the distance of the object.
The focal length of the mirror is given by,
$\Rightarrow \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
Where, $f$ is the focal length, $v$ distance of the image and $u$ is the distance of the object.
Complete step by step answer
Given that,
The magnification of the mirror is, $m = 3$,
The distance of the object of a real image is, $u = 10\,cm$.
Now,
The magnification of the mirror is given by,
$\Rightarrow m = \dfrac{{ - v}}{u}\,.....................\left( 1 \right)$
By substituting the magnification and the distance of the object value in the above equation (1), then the above equation is written as,
$\Rightarrow 3 = \dfrac{{ - v}}{{10}}$
By keeping the term $v$ in one side and the other terms in other side, then
$\Rightarrow - v = 3 \times 10$
On multiplying the terms in the above equation, then
$\Rightarrow v = - 30\,cm$
The above equation is written as,
$\Rightarrow v = 30\,cm$
Now,
The focal length of the mirror is given by,
$\Rightarrow \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}\,...............\left( 2 \right)$
By substituting the distance of the object and the distance of the image in the above equation, then
$\Rightarrow \dfrac{1}{f} = \dfrac{1}{{30}} + \dfrac{1}{{10}}$
By cross multiplying the terms in RHS, then
$\Rightarrow \dfrac{1}{f} = \dfrac{{10 + 30}}{{30 \times 10}}$
On further simplification, then
$\Rightarrow \dfrac{1}{f} = \dfrac{{40}}{{300}}$
By taking reciprocal on both sides, then
$\Rightarrow f = \dfrac{{300}}{{40}}$
On dividing the above equation, then
$\Rightarrow f = 7.5\,cm$
The radius of curvature is equal to the two times of the focal length.
$\Rightarrow R = 2f$
By substituting the focal length value in the above equation, then
$\Rightarrow R = 2 \times 7.5$
On multiplying the above equation, then
$\Rightarrow R = 15\,cm$
The radius of the curvature is $15\,cm$.
Note
The negative values show that the concave mirror reduces the distance of the image focused. The main function of the concave mirror is to decrease the length of the image focused. And the radius of the curvature is equal to the two times of the focal length.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

