Answer
Verified
455.4k+ views
Hint: Segment of a circle is the region bounded by a chord and the arc subtended by the chord.
Sector of the circle looks like a pizza slice.
Complete step by step solution: Segment is the region of a circle bounded by chord and an arc.
The segments are explained in two parts:
As we show in the above diagram a line divides the circle in two parts in which the biggest part of the circle is called the major segment.
Or the lower part or portion is known as a minor segment.
We also calculate the area of segment:
The area of the segment is equal to area of sector minus of area of triangular piece.
\[Area\,\,of\,\,segment = \dfrac{{\left( {\theta - \sin \theta } \right) \times {r^2}}}{2}\,\,\left[ {When\,\,\theta \,\,in\,\,radians} \right]\]
\[Area\,\,of\,\,segment = \left( {\dfrac{{\theta \times \pi }}{{360}} - \dfrac{{\sin \theta }}{2}} \right) \times {r^2}\] (when \[\theta \]is in degrees)
Sector of Circle
The shaded region is the sector of circle.
A sector is created by the central angle formed with two radii and it includes the area inside the circle from that center point to the circle itself. The portion of the circle's circumference bounded by the radii, the arc, is part of the sector.
Common Sectors
The quadrant and semicircle are two special types of sector:
Area of sector\[ = \left( {\dfrac{{\theta ^\circ }}{{360^\circ }}} \right) \times \pi \times {r^2}\]
Where
\[\theta ^\circ \] = degree of the circle
\[R{\text{ }} = {\text{ }}radius{\text{ }}of{\text{ }}the{\text{ }}circle\]
Note: A circle has an angle of\[2\pi \]and an area of $ [ \pi \times {r^2}] $ . A sector has an angle of\[\theta \]instead of \[2\pi \] ,so it has an area which can be simplified to:\[\dfrac{\theta }{2} \times {r^2}\]
Sector of the circle looks like a pizza slice.
Complete step by step solution: Segment is the region of a circle bounded by chord and an arc.
The segments are explained in two parts:
As we show in the above diagram a line divides the circle in two parts in which the biggest part of the circle is called the major segment.
Or the lower part or portion is known as a minor segment.
We also calculate the area of segment:
The area of the segment is equal to area of sector minus of area of triangular piece.
\[Area\,\,of\,\,segment = \dfrac{{\left( {\theta - \sin \theta } \right) \times {r^2}}}{2}\,\,\left[ {When\,\,\theta \,\,in\,\,radians} \right]\]
\[Area\,\,of\,\,segment = \left( {\dfrac{{\theta \times \pi }}{{360}} - \dfrac{{\sin \theta }}{2}} \right) \times {r^2}\] (when \[\theta \]is in degrees)
Sector of Circle
The shaded region is the sector of circle.
A sector is created by the central angle formed with two radii and it includes the area inside the circle from that center point to the circle itself. The portion of the circle's circumference bounded by the radii, the arc, is part of the sector.
Common Sectors
The quadrant and semicircle are two special types of sector:
Area of sector\[ = \left( {\dfrac{{\theta ^\circ }}{{360^\circ }}} \right) \times \pi \times {r^2}\]
Where
\[\theta ^\circ \] = degree of the circle
\[R{\text{ }} = {\text{ }}radius{\text{ }}of{\text{ }}the{\text{ }}circle\]
Note: A circle has an angle of\[2\pi \]and an area of $ [ \pi \times {r^2}] $ . A sector has an angle of\[\theta \]instead of \[2\pi \] ,so it has an area which can be simplified to:\[\dfrac{\theta }{2} \times {r^2}\]
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE