
Define rank and give one example.
Answer
529.2k+ views
Hint: In this question, we are going to give a definition for the rank, rank is a term associated with the matrices and signifies the dimension of the vector space that is generated by the columns of a matrix.
Formula used:
The rank of a matrix is always less than or equal to the order of the \[m\times m\] matrix and is less than or equal to \[m\] in an \[m\times n\] matrix if \[m
Complete step by step solution:
Definition: The rank of a matrix is defined as the dimension of a vector space which is generated by the columns of the matrix. In other words, the rank is defined as the maximum number of linearly independent column vectors in the matrix or the maximum number of the row vectors of a matrix that are linearly independent.
For an \[m\times n\]matrix, if \[mExample of rank:
Let us consider a \[3\times 3\] matrix, the largest order of the submatrix , to be got is \[3\times 3\] only
the rank can be found by the normal form.
Firstly, convert the matrix to identity matrix, for this applying row to row operations on first column,
\[\begin{align}
& \left( \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right) \\
& R1\to R1-R2 \\
& \left( \begin{matrix}
1 & 1 & -3 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right) \\
& R2\to R2-2R1;R3\to R1-R3 \\
& \left( \begin{matrix}
1 & 1 & -3 \\
0 & -2 & 11 \\
0 & -1 & -6 \\
\end{matrix} \right) \\
\end{align}\]
Now, applying row to row operations on the column number \[2\]
\[\begin{align}
& R2\to -R2+R3 \\
& \left( \begin{matrix}
1 & 1 & -3 \\
0 & 1 & -17 \\
0 & -1 & -6 \\
\end{matrix} \right) \\
& R1\to R1-R2;R3\to R2+R3 \\
& \left( \begin{matrix}
1 & 0 & 14 \\
0 & 1 & -17 \\
0 & 0 & -23 \\
\end{matrix} \right) \\
\end{align}\]
Now, operating the third column
\[\begin{align}
& R3\to \dfrac{R3}{-23} \\
& \left( \begin{matrix}
1 & 0 & 14 \\
0 & 1 & -17 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& R1\to R1-14R3;R2\to R2+17R3 \\
& \left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Thus, we obtained an identity matrix of order 3 so, \[rank\left( A \right)=3\]
Note: Alternatively,
\[A=\left( \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right)\]
Rank of \[A\le 3\]
Now,
\[\begin{align}
& \det \left( A \right)=\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right| \\
& \Rightarrow \det \left( A \right)=-23\ne 0 \\
\end{align}\]
As the determinant is not zero, so the rank equals the order of the matrix which is the largest non-zero matrix.
Therefore, \[rank\left( A \right)=3\]
Formula used:
The rank of a matrix is always less than or equal to the order of the \[m\times m\] matrix and is less than or equal to \[m\] in an \[m\times n\] matrix if \[m
Complete step by step solution:
Definition: The rank of a matrix is defined as the dimension of a vector space which is generated by the columns of the matrix. In other words, the rank is defined as the maximum number of linearly independent column vectors in the matrix or the maximum number of the row vectors of a matrix that are linearly independent.
For an \[m\times n\]matrix, if \[m
Let us consider a \[3\times 3\] matrix, the largest order of the submatrix , to be got is \[3\times 3\] only
the rank can be found by the normal form.
Firstly, convert the matrix to identity matrix, for this applying row to row operations on first column,
\[\begin{align}
& \left( \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right) \\
& R1\to R1-R2 \\
& \left( \begin{matrix}
1 & 1 & -3 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right) \\
& R2\to R2-2R1;R3\to R1-R3 \\
& \left( \begin{matrix}
1 & 1 & -3 \\
0 & -2 & 11 \\
0 & -1 & -6 \\
\end{matrix} \right) \\
\end{align}\]
Now, applying row to row operations on the column number \[2\]
\[\begin{align}
& R2\to -R2+R3 \\
& \left( \begin{matrix}
1 & 1 & -3 \\
0 & 1 & -17 \\
0 & -1 & -6 \\
\end{matrix} \right) \\
& R1\to R1-R2;R3\to R2+R3 \\
& \left( \begin{matrix}
1 & 0 & 14 \\
0 & 1 & -17 \\
0 & 0 & -23 \\
\end{matrix} \right) \\
\end{align}\]
Now, operating the third column
\[\begin{align}
& R3\to \dfrac{R3}{-23} \\
& \left( \begin{matrix}
1 & 0 & 14 \\
0 & 1 & -17 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& R1\to R1-14R3;R2\to R2+17R3 \\
& \left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Thus, we obtained an identity matrix of order 3 so, \[rank\left( A \right)=3\]
Note: Alternatively,
\[A=\left( \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right)\]
Rank of \[A\le 3\]
Now,
\[\begin{align}
& \det \left( A \right)=\left| \begin{matrix}
3 & 1 & 2 \\
2 & 0 & 5 \\
1 & 2 & 3 \\
\end{matrix} \right| \\
& \Rightarrow \det \left( A \right)=-23\ne 0 \\
\end{align}\]
As the determinant is not zero, so the rank equals the order of the matrix which is the largest non-zero matrix.
Therefore, \[rank\left( A \right)=3\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

