Answer
Verified
458.1k+ views
Hint: The formula for electric potential is ${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$ and we
can find the dimension of the electric potential from this formula. Electric potential can be said
to be the feature of the electric field.
The electrical energy potential of a charged particle in an electric field depends on the electric
field as well as on the charge of the particle.
The electric potential ${\rm{V}}$is defined as the electric potential energy, ${\rm{U}}$ per
unit charge ${\rm{q}}$.
So, mathematically electric potential could be written as:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential has only magnitude and no direction. So, it is a scalar quantity.
Everywhere in space the electric potential is known as a quantity, but has no direction.
The electrical potential is same for all charges at a given location.
The electrical potential is likewise characterized as the work required against an electrical field
to move a unit positive charge from an infinite separation to a given point.
The potential at infinity is zero.
Electric potential is also simply known as potential.
The S.I unit of electric potential is joule/coulomb or volts.
The dimensions for electric potential can be found as follows:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential energy, ${\rm{U}}$ can also be taken as work done ${\rm{W}}$.
Substituting ${\rm{U}}$ with ${\rm{W}}$, we get:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}$, where work done $ = $force $ \times $distance
$\begin{array}{l}{\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}\\ \Rightarrow
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 2}}{{\rm{C}}^{ - 1}} =
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 3}}{{\rm{A}}^{ - 1}}\end{array}$
Hence, the dimension for electric potential is ${\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ -
3}}{{\rm{A}}^{ - 1}}$.
Note: The electrical potential energy is directly proportional to the charge but electrical potential
is the property of the electrical field itself not depending on the charged particle.
can find the dimension of the electric potential from this formula. Electric potential can be said
to be the feature of the electric field.
The electrical energy potential of a charged particle in an electric field depends on the electric
field as well as on the charge of the particle.
The electric potential ${\rm{V}}$is defined as the electric potential energy, ${\rm{U}}$ per
unit charge ${\rm{q}}$.
So, mathematically electric potential could be written as:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential has only magnitude and no direction. So, it is a scalar quantity.
Everywhere in space the electric potential is known as a quantity, but has no direction.
The electrical potential is same for all charges at a given location.
The electrical potential is likewise characterized as the work required against an electrical field
to move a unit positive charge from an infinite separation to a given point.
The potential at infinity is zero.
Electric potential is also simply known as potential.
The S.I unit of electric potential is joule/coulomb or volts.
The dimensions for electric potential can be found as follows:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential energy, ${\rm{U}}$ can also be taken as work done ${\rm{W}}$.
Substituting ${\rm{U}}$ with ${\rm{W}}$, we get:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}$, where work done $ = $force $ \times $distance
$\begin{array}{l}{\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}\\ \Rightarrow
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 2}}{{\rm{C}}^{ - 1}} =
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 3}}{{\rm{A}}^{ - 1}}\end{array}$
Hence, the dimension for electric potential is ${\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ -
3}}{{\rm{A}}^{ - 1}}$.
Note: The electrical potential energy is directly proportional to the charge but electrical potential
is the property of the electrical field itself not depending on the charged particle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it