Define electric potential and write down its dimension.
Answer
347.7k+ views
Hint: The formula for electric potential is ${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$ and we
can find the dimension of the electric potential from this formula. Electric potential can be said
to be the feature of the electric field.
The electrical energy potential of a charged particle in an electric field depends on the electric
field as well as on the charge of the particle.
The electric potential ${\rm{V}}$is defined as the electric potential energy, ${\rm{U}}$ per
unit charge ${\rm{q}}$.
So, mathematically electric potential could be written as:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential has only magnitude and no direction. So, it is a scalar quantity.
Everywhere in space the electric potential is known as a quantity, but has no direction.
The electrical potential is same for all charges at a given location.
The electrical potential is likewise characterized as the work required against an electrical field
to move a unit positive charge from an infinite separation to a given point.
The potential at infinity is zero.
Electric potential is also simply known as potential.
The S.I unit of electric potential is joule/coulomb or volts.
The dimensions for electric potential can be found as follows:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential energy, ${\rm{U}}$ can also be taken as work done ${\rm{W}}$.
Substituting ${\rm{U}}$ with ${\rm{W}}$, we get:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}$, where work done $ = $force $ \times $distance
$\begin{array}{l}{\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}\\ \Rightarrow
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 2}}{{\rm{C}}^{ - 1}} =
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 3}}{{\rm{A}}^{ - 1}}\end{array}$
Hence, the dimension for electric potential is ${\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ -
3}}{{\rm{A}}^{ - 1}}$.
Note: The electrical potential energy is directly proportional to the charge but electrical potential
is the property of the electrical field itself not depending on the charged particle.
can find the dimension of the electric potential from this formula. Electric potential can be said
to be the feature of the electric field.
The electrical energy potential of a charged particle in an electric field depends on the electric
field as well as on the charge of the particle.
The electric potential ${\rm{V}}$is defined as the electric potential energy, ${\rm{U}}$ per
unit charge ${\rm{q}}$.
So, mathematically electric potential could be written as:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential has only magnitude and no direction. So, it is a scalar quantity.
Everywhere in space the electric potential is known as a quantity, but has no direction.
The electrical potential is same for all charges at a given location.
The electrical potential is likewise characterized as the work required against an electrical field
to move a unit positive charge from an infinite separation to a given point.
The potential at infinity is zero.
Electric potential is also simply known as potential.
The S.I unit of electric potential is joule/coulomb or volts.
The dimensions for electric potential can be found as follows:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}}$
The electric potential energy, ${\rm{U}}$ can also be taken as work done ${\rm{W}}$.
Substituting ${\rm{U}}$ with ${\rm{W}}$, we get:
${\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}$, where work done $ = $force $ \times $distance
$\begin{array}{l}{\rm{V}} = \dfrac{{\rm{U}}}{{\rm{q}}} = \dfrac{{\rm{W}}}{{\rm{q}}} =
\dfrac{{{\rm{F}}{\rm{.d}}}}{{\rm{q}}}\\ \Rightarrow
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 2}}{{\rm{C}}^{ - 1}} =
{\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ - 3}}{{\rm{A}}^{ - 1}}\end{array}$
Hence, the dimension for electric potential is ${\rm{M}}{{\rm{L}}^{\rm{2}}}{{\rm{T}}^{ -
3}}{{\rm{A}}^{ - 1}}$.
Note: The electrical potential energy is directly proportional to the charge but electrical potential
is the property of the electrical field itself not depending on the charged particle.
Recently Updated Pages
Define absolute refractive index of a medium

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
