
Define collinear vectors.
Answer
490.8k+ views
Hint: We start solving by recalling the definition of collinear vectors that they line on the same line or parallel lines. We use the fact that the components of one of the collinear vectors is equal to the multiples of another vector. We use the fact that the cross product of a collinear vector is zero to prove all the conditions about the collinear vectors.
Complete step-by-step answer:
Collinear vectors: - Vectors parallel to one or lying on one line are called collinear vectors.
Condition of collinearity: - Two vectors are collinear if any of these conditions are done.
Condition-1:- Two vectors a, b are collinear if there exists a number such that the below equation will become true.
Condition-2:- Two vectors are collinear if the relation of their coordinates are equal.
This is not valid if one of the components is zero.
Condition-3:- Two vectors are collinear if their cross product is equal to the zero vector.
This is valid only in the case where 2 vectors are three-dimensional (spatial) vectors.
Cross-product:- Cross product of vector a by vector b is the vector c, the length of which is numerically equal to the area of parallelogram constructed on vector a, b, direction is perpendicular to the plane of the vectors of a, b. If a, b vectors are written as , we get cross product a, b represented by as:
Apply this definition to condition-3 we get:
Cross product a, b is 0. From condition 1, we get:
. If we get value of a as,
.
Cross product of is written as:
By expanding this, we get it as follows:
Hence proved.
Note: Be careful with the second condition. If a term is zero in one vector that condition will go wrong. While proving the condition-3 we must take care of a, b. Alternately, assume a as (x, y, z), by this you get b as . Substitute these, anyways you get the same answer.
Complete step-by-step answer:
Collinear vectors: - Vectors parallel to one or lying on one line are called collinear vectors.
Condition of collinearity: - Two vectors are collinear if any of these conditions are done.
Condition-1:- Two vectors a, b are collinear if there exists a number such that the below equation will become true.
Condition-2:- Two vectors are collinear if the relation of their coordinates are equal.
This is not valid if one of the components is zero.
Condition-3:- Two vectors are collinear if their cross product is equal to the zero vector.
This is valid only in the case where 2 vectors are three-dimensional (spatial) vectors.
Cross-product:- Cross product of vector a by vector b is the vector c, the length of which is numerically equal to the area of parallelogram constructed on vector a, b, direction is perpendicular to the plane of the vectors of a, b. If a, b vectors are written as
Apply this definition to condition-3 we get:
Cross product a, b is 0. From condition 1, we get:
Cross product of
By expanding this, we get it as follows:
Hence proved.
Note: Be careful with the second condition. If a term is zero in one vector that condition will go wrong. While proving the condition-3 we must take care of a, b. Alternately, assume a as (x, y, z), by this you get b as
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
