
Convert \[\left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right)\]into an identity matrix by suitable row transformation?
Answer
526.8k+ views
Hint: We have given a\[2\times 2\]matrix i.e. the square matrix. We have been asked to convert the given matrix into an identity matrix by substituting suitable row transformations. To get the solution students need to use basic row operations in the given matrix. That is, addition of rows, subtracting the rows and multiplying a number with the row and getting to operate with the other row. In this way we are going to find an identity matrix.
Formula used:
An identity matrix is a matrix of the form of a square matrix that is having 1’s on the main diagonal and 0’s everywhere else.
The identity matrix of \[2\times 2\]matrix is given by;
\[I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
Complete step-by-step answer:
We have given the matrix,
\[\Rightarrow \left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right)\]
Let the given matrix be ‘A’ i.e. the identity matrix
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\]
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
2-2\left( 1 \right) & 3-2\left( -1 \right) \\
\end{matrix} \right)\]
Simplifying the terms in the above matrix,
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
0 & 5 \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{5}\]
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
\dfrac{0}{5} & \dfrac{5}{5} \\
\end{matrix} \right)\]
Simplifying the terms in the above matrix,
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{1}}\to {{R}_{1}}+{{R}_{2}}\]
\[\Rightarrow A=\left( \begin{matrix}
1+0 & -1+1 \\
0 & 1 \\
\end{matrix} \right)\]
Simplifying the terms in the above matrix,
\[\Rightarrow A=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\]
\[\therefore A=I\]
Hence, this is the required answer.
Note: We can also solve the given question in an alternative method also.
\[A{{A}^{-1}}=I\]
Where A is the given matrix, \[{{A}^{-1}}\]is the inverse matrix of the given matrix and I is the identity matrix.
Now,
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right)\]
As we know that,
\[A{{A}^{-1}}=I\]
Thus,
\[\Rightarrow \left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{1}}\to {{R}_{2}}+\dfrac{1}{3}{{R}_{2}}\]
\[\Rightarrow \left( \begin{matrix}
\dfrac{5}{3} & 0 \\
2 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
1 & \dfrac{1}{3} \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{1}}\to \dfrac{3}{5}{{R}_{1}}\]
\[\Rightarrow \left( \begin{matrix}
1 & 0 \\
2 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
\dfrac{3}{5} & \dfrac{1}{5} \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\]
\[\Rightarrow \left( \begin{matrix}
1 & 0 \\
0 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
\dfrac{3}{5} & \dfrac{1}{5} \\
\dfrac{-6}{5} & \dfrac{3}{5} \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to \dfrac{1}{3}{{R}_{2}}\]
\[\Rightarrow \left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
\dfrac{3}{5} & \dfrac{1}{5} \\
\dfrac{-2}{5} & \dfrac{3}{5} \\
\end{matrix} \right)\]
\[\Rightarrow {{A}^{-1}}I={{A}^{-1}}\]
That is, multiplication of any matrix with the identity matrix results in the matrix itself. Therefore, we converted the given matrix into an identity matrix. As we converted the given matrix into an identity matrix.
Formula used:
An identity matrix is a matrix of the form of a square matrix that is having 1’s on the main diagonal and 0’s everywhere else.
The identity matrix of \[2\times 2\]matrix is given by;
\[I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
Complete step-by-step answer:
We have given the matrix,
\[\Rightarrow \left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right)\]
Let the given matrix be ‘A’ i.e. the identity matrix
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\]
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
2-2\left( 1 \right) & 3-2\left( -1 \right) \\
\end{matrix} \right)\]
Simplifying the terms in the above matrix,
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
0 & 5 \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{5}\]
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
\dfrac{0}{5} & \dfrac{5}{5} \\
\end{matrix} \right)\]
Simplifying the terms in the above matrix,
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{1}}\to {{R}_{1}}+{{R}_{2}}\]
\[\Rightarrow A=\left( \begin{matrix}
1+0 & -1+1 \\
0 & 1 \\
\end{matrix} \right)\]
Simplifying the terms in the above matrix,
\[\Rightarrow A=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\]
\[\therefore A=I\]
Hence, this is the required answer.
Note: We can also solve the given question in an alternative method also.
\[A{{A}^{-1}}=I\]
Where A is the given matrix, \[{{A}^{-1}}\]is the inverse matrix of the given matrix and I is the identity matrix.
Now,
\[\Rightarrow A=\left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right)\]
As we know that,
\[A{{A}^{-1}}=I\]
Thus,
\[\Rightarrow \left( \begin{matrix}
1 & -1 \\
2 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{1}}\to {{R}_{2}}+\dfrac{1}{3}{{R}_{2}}\]
\[\Rightarrow \left( \begin{matrix}
\dfrac{5}{3} & 0 \\
2 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
1 & \dfrac{1}{3} \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{1}}\to \dfrac{3}{5}{{R}_{1}}\]
\[\Rightarrow \left( \begin{matrix}
1 & 0 \\
2 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
\dfrac{3}{5} & \dfrac{1}{5} \\
0 & 1 \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\]
\[\Rightarrow \left( \begin{matrix}
1 & 0 \\
0 & 3 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
\dfrac{3}{5} & \dfrac{1}{5} \\
\dfrac{-6}{5} & \dfrac{3}{5} \\
\end{matrix} \right)\]
Perform: \[{{R}_{2}}\to \dfrac{1}{3}{{R}_{2}}\]
\[\Rightarrow \left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right){{A}^{-1}}=\left( \begin{matrix}
\dfrac{3}{5} & \dfrac{1}{5} \\
\dfrac{-2}{5} & \dfrac{3}{5} \\
\end{matrix} \right)\]
\[\Rightarrow {{A}^{-1}}I={{A}^{-1}}\]
That is, multiplication of any matrix with the identity matrix results in the matrix itself. Therefore, we converted the given matrix into an identity matrix. As we converted the given matrix into an identity matrix.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

