
Consider the word Google among all the 6 letter word that are formed using all the letter of word, Google a word is randomly selected, The probability that O’s remain between G’s in the randomly selected word,is
A) \[\dfrac{1}{6}\]
B) \[\dfrac{1}{3}\]
C) \[\dfrac{1}{9}\]
Answer
483.9k+ views
Hint:
Here, we will use the concept of combination to solve the question. We have to divide the total number of boys into two equal groups. We will then subtract 1 boy from each group so that we separate the two tall boys and calculate the ways to divide remaining boys. Then we will use the formula of combination to find the answer.
Formula used: We will use the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\], where \[{\text{r}}\] is the number of objects selected from \[{\text{n}}\] number of set.
Complete step by step solution:
It is given that 2n boys are divided into two equal groups, that means there will be n boys in each group.
So that the total ways of dividing 2n boys will be \[^{2{\text{n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}\].
As we have to find the probability of two tall boys, so we will leave two boys and find the number of ways to divide remaining boys.
After leaving the tall boys there will be \[2{\text{n}} - 2\] boys which are left to be divided in the subgroups.
The number of ways in which \[2{\text{n}} - 2\] boys can be divided from the 2 subgroups will be given by \[^{2{\text{n - 2}}}{{\text{C}}_{\text{n}}}{ \cdot ^{{\text{n - 1}}}}{{\text{C}}_{\text{n}}}\].
The two tall boys can be divided in two groups in 2 ways.
Now we will divide the two tall boys in different groups in \[\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}}\] ways.
Now we will solve the above expression using the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\].
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {2{\text{n}} - 2 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot \dfrac{{\left( {{\text{n}} - 1} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {2{\text{n}} - {\text{n}}} \right)!}} \cdot \dfrac{{\left( {\text{n}} \right)!}}{{\left( {\text{n}} \right)!\left( {{\text{n}} - {\text{n}}} \right)!}}}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot \dfrac{1}{{0!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot \dfrac{1}{{0!}}}}\end{array}\]
Simplifying the above equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot 1}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)\left( {2{\text{n}} - 2} \right)!}}{{{\text{n}}\left( {{\text{n}} - 1} \right)!\left( {\text{n}} \right)\left( {{\text{n}} - 1} \right)!}} \cdot 1}}\end{array}\]
Again simplifying the equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{2 \cdot {\text{n}} \cdot {\text{n}}}}{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)}}\\ = \dfrac{{\text{n}}}{{\left( {2{\text{n}} - 1} \right)}}\end{array}\]
\[\therefore\] The correct answer is option A.
Note:
Here, we might make a mistake when calculating the factorial. It is important for us to understand that first we need to separate the tall boys to find the ways to divide the rest of the boys. If we find the number of ways to divide boys without separating tall boys, so there is a possibility that they might fall in the same group. So, we will not get the desired answer.
Here, we will use the concept of combination to solve the question. We have to divide the total number of boys into two equal groups. We will then subtract 1 boy from each group so that we separate the two tall boys and calculate the ways to divide remaining boys. Then we will use the formula of combination to find the answer.
Formula used: We will use the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\], where \[{\text{r}}\] is the number of objects selected from \[{\text{n}}\] number of set.
Complete step by step solution:
It is given that 2n boys are divided into two equal groups, that means there will be n boys in each group.
So that the total ways of dividing 2n boys will be \[^{2{\text{n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}\].
As we have to find the probability of two tall boys, so we will leave two boys and find the number of ways to divide remaining boys.
After leaving the tall boys there will be \[2{\text{n}} - 2\] boys which are left to be divided in the subgroups.
The number of ways in which \[2{\text{n}} - 2\] boys can be divided from the 2 subgroups will be given by \[^{2{\text{n - 2}}}{{\text{C}}_{\text{n}}}{ \cdot ^{{\text{n - 1}}}}{{\text{C}}_{\text{n}}}\].
The two tall boys can be divided in two groups in 2 ways.
Now we will divide the two tall boys in different groups in \[\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}}\] ways.
Now we will solve the above expression using the formula of combination, \[^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n}} - {\text{r}}} \right)!}}\].
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {2{\text{n}} - 2 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot \dfrac{{\left( {{\text{n}} - 1} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1 - \left( {{\text{n}} - 1} \right)} \right)!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {2{\text{n}} - {\text{n}}} \right)!}} \cdot \dfrac{{\left( {\text{n}} \right)!}}{{\left( {\text{n}} \right)!\left( {{\text{n}} - {\text{n}}} \right)!}}}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot \dfrac{1}{{0!}} \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot \dfrac{1}{{0!}}}}\end{array}\]
Simplifying the above equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)!}}{{{\text{n}}!\left( {\text{n}} \right)!}} \cdot 1}}\\ = \dfrac{{\dfrac{{\left( {2{\text{n}} - 2} \right)!}}{{\left( {{\text{n}} - 1} \right)!\left( {{\text{n}} - 1} \right)!}} \cdot 1 \cdot 2}}{{\dfrac{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)\left( {2{\text{n}} - 2} \right)!}}{{{\text{n}}\left( {{\text{n}} - 1} \right)!\left( {\text{n}} \right)\left( {{\text{n}} - 1} \right)!}} \cdot 1}}\end{array}\]
Again simplifying the equation, we get
\[\begin{array}{l}\dfrac{{^{{\text{2n}} - {\text{2}}}{{\text{C}}_{{\text{n}} - {\text{1}}}}{ \cdot ^{{\text{n}} - {\text{1}}}}{{\text{C}}_{{\text{n}} - {\text{1}}}} \cdot 2}}{{^{{\text{2n}}}{{\text{C}}_{\text{n}}}{ \cdot ^{\text{n}}}{{\text{C}}_{\text{n}}}}} = \dfrac{{2 \cdot {\text{n}} \cdot {\text{n}}}}{{\left( {2{\text{n}}} \right)\left( {2{\text{n}} - 1} \right)}}\\ = \dfrac{{\text{n}}}{{\left( {2{\text{n}} - 1} \right)}}\end{array}\]
\[\therefore\] The correct answer is option A.
Note:
Here, we might make a mistake when calculating the factorial. It is important for us to understand that first we need to separate the tall boys to find the ways to divide the rest of the boys. If we find the number of ways to divide boys without separating tall boys, so there is a possibility that they might fall in the same group. So, we will not get the desired answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE
