
Consider the number \[N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}\] then:
A. $N$ is divisible by 7
B. $N$ is not divisible by 7
C. $N$ is prime
D. None of these
Answer
571.2k+ views
Hint: First write the number $N$ in the form of \[{\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}\]. Then expand both the terms binomially by using the formula \[{\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}\]. Then simplify the number further and check whether 7 can be taken out from it or not.
Complete step-by-step answer:
According to the question, the given number is:
\[ \Rightarrow N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}\]
First, we will rewrite the above number as:
\[ \Rightarrow N = {\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}\]
Now, we use binomial expansion of \[{\left( {1 + x} \right)^n}\]. As we know that:
\[ \Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}\]
Applying this expansion for $N$, we’ll get:
$ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + {}^{85}{C_{84}}} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + {}^{106}{C_{106}}} \right]$
We know that ${}^n{C_n} = 1$. From this we have ${}^{85}{C_{85}} = {}^{106}{C_{106}} = 1$. Using these values, we’ll get:
\[ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + 1} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + 1} \right]\]
This can be further simplified as:
\[
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] + 1 - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] - 1 \\
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] \\
\]
In the above number, 105 can be taken as common from the first term and 84 can be taken as common from the second term. So we have:
\[ \Rightarrow N = 105\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 84\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]\]
Taking 7 outside from the complete number as both 105 and 84 are multiple of 7, we’ll get:
\[ \Rightarrow N = 7\left( {15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]} \right)\]
Now, let \[15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right] = k\], where \[k\] is a natural number. Then we have:
$ \Rightarrow N = 7k$
Therefore we can see that the number $N$ is divisible by 7.
(A) is the correct option.
Note: For checking divisibility, binomial theorem comes in handy if the number can be transformed in the form of ${\left( {x \pm 1} \right)^n}$ because in such cases the last term becomes ${\left( { - 1} \right)^n}$ which can be easily managed.
The expansion of ${\left( {x \pm 1} \right)^n}$ is done by using the formula:
\[
\Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0} \\
\Rightarrow {\left( {x - 1} \right)^n} = {}^n{C_0}{x^n} - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0} \\
\]
Complete step-by-step answer:
According to the question, the given number is:
\[ \Rightarrow N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}\]
First, we will rewrite the above number as:
\[ \Rightarrow N = {\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}\]
Now, we use binomial expansion of \[{\left( {1 + x} \right)^n}\]. As we know that:
\[ \Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}\]
Applying this expansion for $N$, we’ll get:
$ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + {}^{85}{C_{84}}} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + {}^{106}{C_{106}}} \right]$
We know that ${}^n{C_n} = 1$. From this we have ${}^{85}{C_{85}} = {}^{106}{C_{106}} = 1$. Using these values, we’ll get:
\[ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + 1} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + 1} \right]\]
This can be further simplified as:
\[
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] + 1 - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] - 1 \\
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] \\
\]
In the above number, 105 can be taken as common from the first term and 84 can be taken as common from the second term. So we have:
\[ \Rightarrow N = 105\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 84\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]\]
Taking 7 outside from the complete number as both 105 and 84 are multiple of 7, we’ll get:
\[ \Rightarrow N = 7\left( {15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]} \right)\]
Now, let \[15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right] = k\], where \[k\] is a natural number. Then we have:
$ \Rightarrow N = 7k$
Therefore we can see that the number $N$ is divisible by 7.
(A) is the correct option.
Note: For checking divisibility, binomial theorem comes in handy if the number can be transformed in the form of ${\left( {x \pm 1} \right)^n}$ because in such cases the last term becomes ${\left( { - 1} \right)^n}$ which can be easily managed.
The expansion of ${\left( {x \pm 1} \right)^n}$ is done by using the formula:
\[
\Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0} \\
\Rightarrow {\left( {x - 1} \right)^n} = {}^n{C_0}{x^n} - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0} \\
\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

