
Consider the number \[N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}\] then:
A. $N$ is divisible by 7
B. $N$ is not divisible by 7
C. $N$ is prime
D. None of these
Answer
524.1k+ views
Hint: First write the number $N$ in the form of \[{\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}\]. Then expand both the terms binomially by using the formula \[{\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}\]. Then simplify the number further and check whether 7 can be taken out from it or not.
Complete step-by-step answer:
According to the question, the given number is:
\[ \Rightarrow N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}\]
First, we will rewrite the above number as:
\[ \Rightarrow N = {\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}\]
Now, we use binomial expansion of \[{\left( {1 + x} \right)^n}\]. As we know that:
\[ \Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}\]
Applying this expansion for $N$, we’ll get:
$ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + {}^{85}{C_{84}}} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + {}^{106}{C_{106}}} \right]$
We know that ${}^n{C_n} = 1$. From this we have ${}^{85}{C_{85}} = {}^{106}{C_{106}} = 1$. Using these values, we’ll get:
\[ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + 1} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + 1} \right]\]
This can be further simplified as:
\[
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] + 1 - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] - 1 \\
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] \\
\]
In the above number, 105 can be taken as common from the first term and 84 can be taken as common from the second term. So we have:
\[ \Rightarrow N = 105\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 84\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]\]
Taking 7 outside from the complete number as both 105 and 84 are multiple of 7, we’ll get:
\[ \Rightarrow N = 7\left( {15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]} \right)\]
Now, let \[15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right] = k\], where \[k\] is a natural number. Then we have:
$ \Rightarrow N = 7k$
Therefore we can see that the number $N$ is divisible by 7.
(A) is the correct option.
Note: For checking divisibility, binomial theorem comes in handy if the number can be transformed in the form of ${\left( {x \pm 1} \right)^n}$ because in such cases the last term becomes ${\left( { - 1} \right)^n}$ which can be easily managed.
The expansion of ${\left( {x \pm 1} \right)^n}$ is done by using the formula:
\[
\Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0} \\
\Rightarrow {\left( {x - 1} \right)^n} = {}^n{C_0}{x^n} - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0} \\
\]
Complete step-by-step answer:
According to the question, the given number is:
\[ \Rightarrow N = {\left( {106} \right)^{85}} - {\left( {85} \right)^{106}}\]
First, we will rewrite the above number as:
\[ \Rightarrow N = {\left( {105 + 1} \right)^{85}} - {\left( {84 + 1} \right)^{106}}\]
Now, we use binomial expansion of \[{\left( {1 + x} \right)^n}\]. As we know that:
\[ \Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0}\]
Applying this expansion for $N$, we’ll get:
$ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + {}^{85}{C_{84}}} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + {}^{106}{C_{106}}} \right]$
We know that ${}^n{C_n} = 1$. From this we have ${}^{85}{C_{85}} = {}^{106}{C_{106}} = 1$. Using these values, we’ll get:
\[ \Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ... + 1} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84 + 1} \right]\]
This can be further simplified as:
\[
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] + 1 - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] - 1 \\
\Rightarrow N = \left[ {{}^{85}{C_0}{{\left( {105} \right)}^{85}} + {}^{85}{C_1}{{\left( {105} \right)}^{84}} + ...} \right] - \left[ {{}^{106}{C_0}{{\left( {84} \right)}^{106}} + ....{}^{106}{C_{105}}84} \right] \\
\]
In the above number, 105 can be taken as common from the first term and 84 can be taken as common from the second term. So we have:
\[ \Rightarrow N = 105\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 84\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]\]
Taking 7 outside from the complete number as both 105 and 84 are multiple of 7, we’ll get:
\[ \Rightarrow N = 7\left( {15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right]} \right)\]
Now, let \[15\left[ {{}^{85}{C_0}{{\left( {105} \right)}^{84}} + {}^{85}{C_1}{{\left( {105} \right)}^{83}} + ...} \right] - 12\left[ {{}^{106}{C_0}{{\left( {84} \right)}^{105}} + ....{}^{106}{C_{105}}} \right] = k\], where \[k\] is a natural number. Then we have:
$ \Rightarrow N = 7k$
Therefore we can see that the number $N$ is divisible by 7.
(A) is the correct option.
Note: For checking divisibility, binomial theorem comes in handy if the number can be transformed in the form of ${\left( {x \pm 1} \right)^n}$ because in such cases the last term becomes ${\left( { - 1} \right)^n}$ which can be easily managed.
The expansion of ${\left( {x \pm 1} \right)^n}$ is done by using the formula:
\[
\Rightarrow {\left( {x + 1} \right)^n} = {}^n{C_0}{x^n} + {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {}^n{C_n}{x^0} \\
\Rightarrow {\left( {x - 1} \right)^n} = {}^n{C_0}{x^n} - {}^n{C_1}{x^{n - 1}} + {}^n{C_2}{x^{n - 2}} + .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0} \\
\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The idea of the Constitution of India was first of class 12 social science CBSE

What is the feedback mechanism of hormone regulation class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

Why should a magnesium ribbon be cleaned before burning class 12 chemistry CBSE
