
Consider the given expression \[\left( 1+i \right)\times z=\left( 1-i \right)\bar{z}\], then \[z=x+iy\] is
A. \[z\left( 1-i \right),x\in R\]
B. \[x\left( 1-i \right),x\in R\]
C. \[\dfrac{x+1}{1+i},x\in {{R}^{T}}\]
D. none of these
Answer
607.8k+ views
Hint: Rearrange the given expression and take their conjugate. Find the relation connecting z and \[\bar{z}\]. Put \[z=x+iy\] and \[\bar{z}=x-iy\] and thus get the expression for z.
Complete step-by-step answer:
We have been given the expression, \[\left( 1+i \right)\times z=\left( 1-i \right)\bar{z}\].
Let us cross multiply the above expression. We get,
\[\begin{align}
& \left( 1+i \right)\times z=\left( 1-i \right)\bar{z} \\
& \Rightarrow z=\left( \dfrac{1-i}{1+i} \right)\bar{z} \\
\end{align}\]
Multiply the numerator and denominator with \[\left( 1-i \right)\].
\[z=\dfrac{\left( 1-i \right)\left( 1-i \right)}{\left( 1+i \right)\left( 1-i \right)}\bar{z}\] \[\begin{align}
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}} \\
& \because {{i}^{2}}=-1 \\
\end{align}\]
\[\begin{align}
& z=\dfrac{{{\left( 1-i \right)}^{2}}}{{{1}^{2}}-{{(i)}^{2}}}\bar{z}=\left( \dfrac{1-2i+{{i}^{2}}}{1-{{i}^{2}}} \right)\bar{z} \\
& z=\dfrac{1-2i-1}{1-(-1)}\bar{z} \\
& z=\dfrac{-2i}{2}\bar{z}\Rightarrow z=-i\bar{z} \\
\end{align}\]
Thus we got \[z=-i\bar{z}.......(1)\]
Now it’s given that \[z=x+iy\], so \[\bar{z}=\left( x-iy \right)\].
Substitute the value of \[\bar{z}\] in equation (1).
\[\therefore \bar{z}=-i\left( x-iy \right)\]
Open the brackets and simplify the expression
\[\therefore z=-ix+(-1)y\] We know \[{{i}^{2}}=-1\].
\[\begin{align}
& =-ix-y \\
& z=-(y+ix).......(2) \\
& \therefore z=-i(x-iy)=-(y+ix) \\
\end{align}\]
From this we can say that \[x=-y\].
\[\begin{align}
& z=x+iy=x-ix \\
& \therefore z=x\left( 1-i \right) \\
\end{align}\]
Thus we got the values as \[z=x\left( 1-i \right),x\in R\].
Option B is the correct answer.
Note:
Remember that if \[z=x+iy\], then \[\bar{z}=x-iy\]. This is some of the important portions in complex numbers. You need to remember basic geometric formulae which we have used here. Thus after getting \[z=-i\bar{z}\], substitute the necessary values and solve it.
Complete step-by-step answer:
We have been given the expression, \[\left( 1+i \right)\times z=\left( 1-i \right)\bar{z}\].
Let us cross multiply the above expression. We get,
\[\begin{align}
& \left( 1+i \right)\times z=\left( 1-i \right)\bar{z} \\
& \Rightarrow z=\left( \dfrac{1-i}{1+i} \right)\bar{z} \\
\end{align}\]
Multiply the numerator and denominator with \[\left( 1-i \right)\].
\[z=\dfrac{\left( 1-i \right)\left( 1-i \right)}{\left( 1+i \right)\left( 1-i \right)}\bar{z}\] \[\begin{align}
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}} \\
& \because {{i}^{2}}=-1 \\
\end{align}\]
\[\begin{align}
& z=\dfrac{{{\left( 1-i \right)}^{2}}}{{{1}^{2}}-{{(i)}^{2}}}\bar{z}=\left( \dfrac{1-2i+{{i}^{2}}}{1-{{i}^{2}}} \right)\bar{z} \\
& z=\dfrac{1-2i-1}{1-(-1)}\bar{z} \\
& z=\dfrac{-2i}{2}\bar{z}\Rightarrow z=-i\bar{z} \\
\end{align}\]
Thus we got \[z=-i\bar{z}.......(1)\]
Now it’s given that \[z=x+iy\], so \[\bar{z}=\left( x-iy \right)\].
Substitute the value of \[\bar{z}\] in equation (1).
\[\therefore \bar{z}=-i\left( x-iy \right)\]
Open the brackets and simplify the expression
\[\therefore z=-ix+(-1)y\] We know \[{{i}^{2}}=-1\].
\[\begin{align}
& =-ix-y \\
& z=-(y+ix).......(2) \\
& \therefore z=-i(x-iy)=-(y+ix) \\
\end{align}\]
From this we can say that \[x=-y\].
\[\begin{align}
& z=x+iy=x-ix \\
& \therefore z=x\left( 1-i \right) \\
\end{align}\]
Thus we got the values as \[z=x\left( 1-i \right),x\in R\].
Option B is the correct answer.
Note:
Remember that if \[z=x+iy\], then \[\bar{z}=x-iy\]. This is some of the important portions in complex numbers. You need to remember basic geometric formulae which we have used here. Thus after getting \[z=-i\bar{z}\], substitute the necessary values and solve it.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

