
Consider the function \[{{y}^{x}}={{e}^{y-x}}\], then prove that $\dfrac{dy}{dx}=\dfrac{{{\left( 1+\log y \right)}^{2}}}{\log y}$
Answer
591.6k+ views
Hint: Proceed with the given equation, analyse and apply logarithm functions. Further simplify using logarithm properties like $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$ and then start differentiating both the sides with respect to the respective variables using Power Rule $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$ and the Quotient Rule for differentiation when the function is given in $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ form, then the derivative is \[f'\left( x \right)=\dfrac{g'\left( x \right)h\left( x \right)-h'\left( x \right)g\left( x \right)}{{{\left[ h\left( x \right) \right]}^{2}}}\].
Complete step-by-step solution:
We will start with the given equation in the question that: \[{{y}^{x}}={{e}^{y-x}}\]
Now, let’s apply log on both sides of the equation we get:
\[\log {{y}^{x}}=\log {{e}^{y-x}}..............\text{ Equation 1}\text{.}\] ;
Now we know that according to one of the properties of logarithm: $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$
Applying the above property in equation 1 on both sides, we get
$x\log y=(y-x)\log e..............\text{ Equation 2}\text{.}$
We know that \[\log e=1\] , therefore equation 2 becomes:
$x\log y=y-x$
Taking x on the R.H.S.(Right Hand Side) , we will have:
\[\begin{align}
& \log y=\dfrac{y-x}{x} \\
& \log y=\dfrac{y}{x}-\dfrac{x}{x}\Rightarrow \log y=\dfrac{y}{x}-\dfrac{{x}}{{x}}\Rightarrow \log y=\dfrac{y}{x}-1 \\
\end{align}\]
Taking 1 on the L.H.S. (Left Hand Side), we will get:
$\log y+1=\dfrac{y}{x}$ ;
Now to make differentiation easy we will move terms with y-variables on one side and those with x variables on another:
\[x=\dfrac{y}{1+\log y}\]
Differentiating L.H.S. with respect to x and R.H.S. with respect to y.
\[\begin{align}
& \dfrac{d\left( x \right)}{dx}=\dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy}..............\text{ Equation 3}\text{.} \\
& \\
\end{align}\]
Differentiating L.H.S.:
We will use the power rule here for differentiation, as we know that the power rule is : $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$
\[\dfrac{d\left( x \right)}{dx}=1.{{x}^{0}}\Rightarrow d(x)=1.dx\]
Differentiating R.H.S.:
We will use the Quotient Rule here for the differentiation, as we know the Quotient rule is:
If: $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ , then \[f'\left( x \right)=\dfrac{g'\left( x \right)h\left( x \right)-h'\left( x \right)g\left( x \right)}{{{\left[ h\left( x \right) \right]}^{2}}}\] ,
Applying this to the RHS
\[\begin{align}
& \dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy} \\
& =\dfrac{\dfrac{d}{dy}\left[ y \right].\left( 1+\log \left( y \right) \right)-y.\dfrac{d}{dy}\left[ 1+\log \left( y \right) \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1\left( 1+\log \left( y \right) \right)-y.\left[ \dfrac{d}{dy}\left[ 1 \right]+\dfrac{d}{dy}\left[ \log \left( y \right) \right] \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-y.\left[ 0+\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-\left[ y.0+y.\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}=\dfrac{1+\log \left( y \right)-\left[ 0+{y}.\dfrac{1}{{y}} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}==\dfrac{1+\log \left( y \right)-0-1}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{\log y}{\left( 1+\log \left( y \right) \right)2} \\
& \therefore d\left( \dfrac{y}{1+\log y} \right)==\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy \\
\end{align}\]
Putting both the values obtained after differentiating in Equation 3:
\[\begin{align}
& 1.dx=\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy
\end{align}\]
Taking $\dfrac{dy}{dx}$ on one side we will then have:
$\dfrac{dy}{dx}=\dfrac{{{\left( 1+\log y \right)}^{2}}}{\log y}$
Hence Proved.
Note: While solving (differentiating RHS) differential properties are applied like $\dfrac{d\left( \log y \right)}{dy}=\dfrac{1}{y}$ , students can make that mistake. In equation 2 log(e) can also be written as ln e. Student can make the mistake while changing the sign while performing logarithmic functions and hence calculation must be done with concentration.
Complete step-by-step solution:
We will start with the given equation in the question that: \[{{y}^{x}}={{e}^{y-x}}\]
Now, let’s apply log on both sides of the equation we get:
\[\log {{y}^{x}}=\log {{e}^{y-x}}..............\text{ Equation 1}\text{.}\] ;
Now we know that according to one of the properties of logarithm: $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$
Applying the above property in equation 1 on both sides, we get
$x\log y=(y-x)\log e..............\text{ Equation 2}\text{.}$
We know that \[\log e=1\] , therefore equation 2 becomes:
$x\log y=y-x$
Taking x on the R.H.S.(Right Hand Side) , we will have:
\[\begin{align}
& \log y=\dfrac{y-x}{x} \\
& \log y=\dfrac{y}{x}-\dfrac{x}{x}\Rightarrow \log y=\dfrac{y}{x}-\dfrac{{x}}{{x}}\Rightarrow \log y=\dfrac{y}{x}-1 \\
\end{align}\]
Taking 1 on the L.H.S. (Left Hand Side), we will get:
$\log y+1=\dfrac{y}{x}$ ;
Now to make differentiation easy we will move terms with y-variables on one side and those with x variables on another:
\[x=\dfrac{y}{1+\log y}\]
Differentiating L.H.S. with respect to x and R.H.S. with respect to y.
\[\begin{align}
& \dfrac{d\left( x \right)}{dx}=\dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy}..............\text{ Equation 3}\text{.} \\
& \\
\end{align}\]
Differentiating L.H.S.:
We will use the power rule here for differentiation, as we know that the power rule is : $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$
\[\dfrac{d\left( x \right)}{dx}=1.{{x}^{0}}\Rightarrow d(x)=1.dx\]
Differentiating R.H.S.:
We will use the Quotient Rule here for the differentiation, as we know the Quotient rule is:
If: $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ , then \[f'\left( x \right)=\dfrac{g'\left( x \right)h\left( x \right)-h'\left( x \right)g\left( x \right)}{{{\left[ h\left( x \right) \right]}^{2}}}\] ,
Applying this to the RHS
\[\begin{align}
& \dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy} \\
& =\dfrac{\dfrac{d}{dy}\left[ y \right].\left( 1+\log \left( y \right) \right)-y.\dfrac{d}{dy}\left[ 1+\log \left( y \right) \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1\left( 1+\log \left( y \right) \right)-y.\left[ \dfrac{d}{dy}\left[ 1 \right]+\dfrac{d}{dy}\left[ \log \left( y \right) \right] \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-y.\left[ 0+\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-\left[ y.0+y.\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}=\dfrac{1+\log \left( y \right)-\left[ 0+{y}.\dfrac{1}{{y}} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}==\dfrac{1+\log \left( y \right)-0-1}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{\log y}{\left( 1+\log \left( y \right) \right)2} \\
& \therefore d\left( \dfrac{y}{1+\log y} \right)==\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy \\
\end{align}\]
Putting both the values obtained after differentiating in Equation 3:
\[\begin{align}
& 1.dx=\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy
\end{align}\]
Taking $\dfrac{dy}{dx}$ on one side we will then have:
$\dfrac{dy}{dx}=\dfrac{{{\left( 1+\log y \right)}^{2}}}{\log y}$
Hence Proved.
Note: While solving (differentiating RHS) differential properties are applied like $\dfrac{d\left( \log y \right)}{dy}=\dfrac{1}{y}$ , students can make that mistake. In equation 2 log(e) can also be written as ln e. Student can make the mistake while changing the sign while performing logarithmic functions and hence calculation must be done with concentration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

