
Consider the function \[{{y}^{x}}={{e}^{y-x}}\], then prove that $\dfrac{dy}{dx}=\dfrac{{{\left( 1+\log y \right)}^{2}}}{\log y}$
Answer
513.3k+ views
Hint: Proceed with the given equation, analyse and apply logarithm functions. Further simplify using logarithm properties like $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$ and then start differentiating both the sides with respect to the respective variables using Power Rule $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$ and the Quotient Rule for differentiation when the function is given in $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ form, then the derivative is \[f'\left( x \right)=\dfrac{g'\left( x \right)h\left( x \right)-h'\left( x \right)g\left( x \right)}{{{\left[ h\left( x \right) \right]}^{2}}}\].
Complete step-by-step solution:
We will start with the given equation in the question that: \[{{y}^{x}}={{e}^{y-x}}\]
Now, let’s apply log on both sides of the equation we get:
\[\log {{y}^{x}}=\log {{e}^{y-x}}..............\text{ Equation 1}\text{.}\] ;
Now we know that according to one of the properties of logarithm: $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$
Applying the above property in equation 1 on both sides, we get
$x\log y=(y-x)\log e..............\text{ Equation 2}\text{.}$
We know that \[\log e=1\] , therefore equation 2 becomes:
$x\log y=y-x$
Taking x on the R.H.S.(Right Hand Side) , we will have:
\[\begin{align}
& \log y=\dfrac{y-x}{x} \\
& \log y=\dfrac{y}{x}-\dfrac{x}{x}\Rightarrow \log y=\dfrac{y}{x}-\dfrac{{x}}{{x}}\Rightarrow \log y=\dfrac{y}{x}-1 \\
\end{align}\]
Taking 1 on the L.H.S. (Left Hand Side), we will get:
$\log y+1=\dfrac{y}{x}$ ;
Now to make differentiation easy we will move terms with y-variables on one side and those with x variables on another:
\[x=\dfrac{y}{1+\log y}\]
Differentiating L.H.S. with respect to x and R.H.S. with respect to y.
\[\begin{align}
& \dfrac{d\left( x \right)}{dx}=\dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy}..............\text{ Equation 3}\text{.} \\
& \\
\end{align}\]
Differentiating L.H.S.:
We will use the power rule here for differentiation, as we know that the power rule is : $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$
\[\dfrac{d\left( x \right)}{dx}=1.{{x}^{0}}\Rightarrow d(x)=1.dx\]
Differentiating R.H.S.:
We will use the Quotient Rule here for the differentiation, as we know the Quotient rule is:
If: $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ , then \[f'\left( x \right)=\dfrac{g'\left( x \right)h\left( x \right)-h'\left( x \right)g\left( x \right)}{{{\left[ h\left( x \right) \right]}^{2}}}\] ,
Applying this to the RHS
\[\begin{align}
& \dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy} \\
& =\dfrac{\dfrac{d}{dy}\left[ y \right].\left( 1+\log \left( y \right) \right)-y.\dfrac{d}{dy}\left[ 1+\log \left( y \right) \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1\left( 1+\log \left( y \right) \right)-y.\left[ \dfrac{d}{dy}\left[ 1 \right]+\dfrac{d}{dy}\left[ \log \left( y \right) \right] \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-y.\left[ 0+\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-\left[ y.0+y.\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}=\dfrac{1+\log \left( y \right)-\left[ 0+{y}.\dfrac{1}{{y}} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}==\dfrac{1+\log \left( y \right)-0-1}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{\log y}{\left( 1+\log \left( y \right) \right)2} \\
& \therefore d\left( \dfrac{y}{1+\log y} \right)==\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy \\
\end{align}\]
Putting both the values obtained after differentiating in Equation 3:
\[\begin{align}
& 1.dx=\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy
\end{align}\]
Taking $\dfrac{dy}{dx}$ on one side we will then have:
$\dfrac{dy}{dx}=\dfrac{{{\left( 1+\log y \right)}^{2}}}{\log y}$
Hence Proved.
Note: While solving (differentiating RHS) differential properties are applied like $\dfrac{d\left( \log y \right)}{dy}=\dfrac{1}{y}$ , students can make that mistake. In equation 2 log(e) can also be written as ln e. Student can make the mistake while changing the sign while performing logarithmic functions and hence calculation must be done with concentration.
Complete step-by-step solution:
We will start with the given equation in the question that: \[{{y}^{x}}={{e}^{y-x}}\]
Now, let’s apply log on both sides of the equation we get:
\[\log {{y}^{x}}=\log {{e}^{y-x}}..............\text{ Equation 1}\text{.}\] ;
Now we know that according to one of the properties of logarithm: $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$
Applying the above property in equation 1 on both sides, we get
$x\log y=(y-x)\log e..............\text{ Equation 2}\text{.}$
We know that \[\log e=1\] , therefore equation 2 becomes:
$x\log y=y-x$
Taking x on the R.H.S.(Right Hand Side) , we will have:
\[\begin{align}
& \log y=\dfrac{y-x}{x} \\
& \log y=\dfrac{y}{x}-\dfrac{x}{x}\Rightarrow \log y=\dfrac{y}{x}-\dfrac{{x}}{{x}}\Rightarrow \log y=\dfrac{y}{x}-1 \\
\end{align}\]
Taking 1 on the L.H.S. (Left Hand Side), we will get:
$\log y+1=\dfrac{y}{x}$ ;
Now to make differentiation easy we will move terms with y-variables on one side and those with x variables on another:
\[x=\dfrac{y}{1+\log y}\]
Differentiating L.H.S. with respect to x and R.H.S. with respect to y.
\[\begin{align}
& \dfrac{d\left( x \right)}{dx}=\dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy}..............\text{ Equation 3}\text{.} \\
& \\
\end{align}\]
Differentiating L.H.S.:
We will use the power rule here for differentiation, as we know that the power rule is : $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$
\[\dfrac{d\left( x \right)}{dx}=1.{{x}^{0}}\Rightarrow d(x)=1.dx\]
Differentiating R.H.S.:
We will use the Quotient Rule here for the differentiation, as we know the Quotient rule is:
If: $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ , then \[f'\left( x \right)=\dfrac{g'\left( x \right)h\left( x \right)-h'\left( x \right)g\left( x \right)}{{{\left[ h\left( x \right) \right]}^{2}}}\] ,
Applying this to the RHS
\[\begin{align}
& \dfrac{d\left( \dfrac{y}{1+\log y} \right)}{dy} \\
& =\dfrac{\dfrac{d}{dy}\left[ y \right].\left( 1+\log \left( y \right) \right)-y.\dfrac{d}{dy}\left[ 1+\log \left( y \right) \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1\left( 1+\log \left( y \right) \right)-y.\left[ \dfrac{d}{dy}\left[ 1 \right]+\dfrac{d}{dy}\left[ \log \left( y \right) \right] \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-y.\left[ 0+\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{1+\log \left( y \right)-\left[ y.0+y.\dfrac{1}{y} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}=\dfrac{1+\log \left( y \right)-\left[ 0+{y}.\dfrac{1}{{y}} \right]}{{{\left( 1+\log \left( y \right) \right)}^{2}}}==\dfrac{1+\log \left( y \right)-0-1}{{{\left( 1+\log \left( y \right) \right)}^{2}}} \\
& =\dfrac{\log y}{\left( 1+\log \left( y \right) \right)2} \\
& \therefore d\left( \dfrac{y}{1+\log y} \right)==\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy \\
\end{align}\]
Putting both the values obtained after differentiating in Equation 3:
\[\begin{align}
& 1.dx=\dfrac{\log y}{{{\left( 1+\log \left( y \right) \right)}^{2}}}.dy
\end{align}\]
Taking $\dfrac{dy}{dx}$ on one side we will then have:
$\dfrac{dy}{dx}=\dfrac{{{\left( 1+\log y \right)}^{2}}}{\log y}$
Hence Proved.
Note: While solving (differentiating RHS) differential properties are applied like $\dfrac{d\left( \log y \right)}{dy}=\dfrac{1}{y}$ , students can make that mistake. In equation 2 log(e) can also be written as ln e. Student can make the mistake while changing the sign while performing logarithmic functions and hence calculation must be done with concentration.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
