
Consider the following matrix $\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|=A$, then $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=?$
Answer
577.8k+ views
Hint: We know that the determinant of a $3\times 3$ matrix can be written as $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-gf \right)+c\left( dh-ge \right)$. From this formula we will find the value of $A$ from given data. Now we have to find the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$, here also we will use the determinant formula and we will calculate the value of determinant and further we can simplify it and use the value of $A$ to get the result.
Complete step-by-step solution:
Given that, $\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|=A$
We know that $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-gf \right)+c\left( dh-ge \right)$, hence
$\begin{align}
& \left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|=A \\
& l\left( qu-tr \right)-m\left( pu-sr \right)+n\left( pt-sq \right)=A....\left( \text{i} \right) \\
\end{align}$
Now the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ is given by
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2l\left[ \left( 2q \right)\left( 2u \right)-\left( 2t \right)\left( 2r \right) \right]-2m\left[ \left( 2p \right)\left( 2u \right)-\left( 2s \right)\left( 2r \right) \right]+2n\left[ \left( 2p \right)\left( 2t \right)-\left( 2q \right)\left( 2s \right) \right]$
We know that $\left( a \right)\left( b \right)=a\times b$, then we will get
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2l\left[ 4qu-4tr \right]-2m\left[ 4pu-4sr \right]+2n\left[ 4pt-4qs \right]$
Taking common $4$ from the terms $\left[ 4qu-4tr \right]$, $\left[ 4pu-4sr \right]$, $\left[ 4pt-4qs \right]$, then we will have
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2l\left( 4 \right)\left[ qu-tr \right]-2m\left( 4 \right)\left[ pu-sr \right]+2n\left( 4 \right)\left[ pt-qs \right]$
Multiplying the terms $2l\left( 4 \right)$, $2m\left( 4 \right)$, $2n\left( 4 \right)$, then we will have
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8l\left[ qu-tr \right]-8m\left[ pu-sr \right]+8n\left[ pt-qs \right]$
Taking common $8$ from terms $8l\left[ qu-tr \right]$, $8m\left[ pu-sr \right]$, $8n\left[ pt-qs \right]$, then we will get
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8\left[ l\left( qu-tr \right)-m\left( pu-sr \right)+n\left( pt-qs \right) \right]$
From equation $\left( \text{i} \right)$ we have the value $l\left( qu-tr \right)-m\left( pu-sr \right)+n\left( pt-sq \right)=A$, substituting this value in the above equation, then we will get
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8A$
Hence the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ is $8A$ where $A=\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|$
Note: We can also solve the above problem with the rule of the determinate i.e. $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
ka & kb & kc \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$ or $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
a & b & c \\
kd & ke & kf \\
g & h & i \\
\end{matrix} \right|$ and also $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
a & b & c \\
d & e & f \\
kg & kh & ki \\
\end{matrix} \right|$or vice versa.
Here we have to find the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$
Taking $2$ common from the first row then
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2\left| \begin{matrix}
l & m & n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ since we have $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
ka & kb & kc \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$
Taking $2$ common from the second row then
$\begin{align}
& \left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2\left| \begin{matrix}
l & m & n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right| \\
& =2\times 2\left| \begin{matrix}
l & m & n \\
p & q & r \\
2s & 2t & 2u \\
\end{matrix} \right| \\
\end{align}$
Now Taking $2$ common from the third row then
$\begin{align}
& \left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2\times 2\left| \begin{matrix}
l & m & n \\
p & q & r \\
2s & 2t & 2u \\
\end{matrix} \right| \\
& =4\times 2\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right| \\
& =8\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right| \\
\end{align}$
In the problem we have given that $\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|=A$, substituting this value in above equation, then we will get
$\begin{align}
& \left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right| \\
& =8A \\
\end{align}$
Hence the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ is $8A$ where $A=\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|$
From both the methods we got the same result.
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-gf \right)+c\left( dh-ge \right)$. From this formula we will find the value of $A$ from given data. Now we have to find the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$, here also we will use the determinant formula and we will calculate the value of determinant and further we can simplify it and use the value of $A$ to get the result.
Complete step-by-step solution:
Given that, $\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|=A$
We know that $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-hf \right)-b\left( di-gf \right)+c\left( dh-ge \right)$, hence
$\begin{align}
& \left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|=A \\
& l\left( qu-tr \right)-m\left( pu-sr \right)+n\left( pt-sq \right)=A....\left( \text{i} \right) \\
\end{align}$
Now the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ is given by
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2l\left[ \left( 2q \right)\left( 2u \right)-\left( 2t \right)\left( 2r \right) \right]-2m\left[ \left( 2p \right)\left( 2u \right)-\left( 2s \right)\left( 2r \right) \right]+2n\left[ \left( 2p \right)\left( 2t \right)-\left( 2q \right)\left( 2s \right) \right]$
We know that $\left( a \right)\left( b \right)=a\times b$, then we will get
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2l\left[ 4qu-4tr \right]-2m\left[ 4pu-4sr \right]+2n\left[ 4pt-4qs \right]$
Taking common $4$ from the terms $\left[ 4qu-4tr \right]$, $\left[ 4pu-4sr \right]$, $\left[ 4pt-4qs \right]$, then we will have
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2l\left( 4 \right)\left[ qu-tr \right]-2m\left( 4 \right)\left[ pu-sr \right]+2n\left( 4 \right)\left[ pt-qs \right]$
Multiplying the terms $2l\left( 4 \right)$, $2m\left( 4 \right)$, $2n\left( 4 \right)$, then we will have
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8l\left[ qu-tr \right]-8m\left[ pu-sr \right]+8n\left[ pt-qs \right]$
Taking common $8$ from terms $8l\left[ qu-tr \right]$, $8m\left[ pu-sr \right]$, $8n\left[ pt-qs \right]$, then we will get
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8\left[ l\left( qu-tr \right)-m\left( pu-sr \right)+n\left( pt-qs \right) \right]$
From equation $\left( \text{i} \right)$ we have the value $l\left( qu-tr \right)-m\left( pu-sr \right)+n\left( pt-sq \right)=A$, substituting this value in the above equation, then we will get
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8A$
Hence the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ is $8A$ where $A=\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|$
Note: We can also solve the above problem with the rule of the determinate i.e. $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
ka & kb & kc \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$ or $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
a & b & c \\
kd & ke & kf \\
g & h & i \\
\end{matrix} \right|$ and also $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
a & b & c \\
d & e & f \\
kg & kh & ki \\
\end{matrix} \right|$or vice versa.
Here we have to find the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$
Taking $2$ common from the first row then
$\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2\left| \begin{matrix}
l & m & n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ since we have $k\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=\left| \begin{matrix}
ka & kb & kc \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$
Taking $2$ common from the second row then
$\begin{align}
& \left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2\left| \begin{matrix}
l & m & n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right| \\
& =2\times 2\left| \begin{matrix}
l & m & n \\
p & q & r \\
2s & 2t & 2u \\
\end{matrix} \right| \\
\end{align}$
Now Taking $2$ common from the third row then
$\begin{align}
& \left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=2\times 2\left| \begin{matrix}
l & m & n \\
p & q & r \\
2s & 2t & 2u \\
\end{matrix} \right| \\
& =4\times 2\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right| \\
& =8\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right| \\
\end{align}$
In the problem we have given that $\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|=A$, substituting this value in above equation, then we will get
$\begin{align}
& \left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|=8\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right| \\
& =8A \\
\end{align}$
Hence the value of $\left| \begin{matrix}
2l & 2m & 2n \\
2p & 2q & 2r \\
2s & 2t & 2u \\
\end{matrix} \right|$ is $8A$ where $A=\left| \begin{matrix}
l & m & n \\
p & q & r \\
s & t & u \\
\end{matrix} \right|$
From both the methods we got the same result.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

