
Choose the correct option(s) for the following question given below:
Function whose jump (non-negative difference of \[LHL\]and \[RHL\]) of discontinuity is greater than or equal to one, is are-
A. \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{\left( {{e^{\dfrac{1}{x}}} + 1} \right)}}{{\left( {{e^{\dfrac{1}{x}}} - 1} \right)}},\,\,\,\,\,x < 0} \\
{\dfrac{{\left( {1 - \cos x} \right)}}{x},\,\,\,\,\,x < 0}
\end{array}} \right.\]
B. \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{\left( {{x^{\dfrac{1}{3}}} + 1} \right)}}{{\left( {{x^{\dfrac{1}{2}}} - 1} \right)}},\,\,\,\,\,x > 1} \\
{\dfrac{{\ln x}}{{\left( {x - 1} \right)}},\,\,\,\,\,\dfrac{1}{2} < x < 1}
\end{array}} \right.\]
C. \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{{\sin }^{ - 1}}2x}}{{{{\tan }^{ - 1}}3x}},\,\,\,\,\,x \in \left( {0,\left. {\dfrac{1}{2}} \right]} \right.} \\
{\dfrac{{\left| {\sin x} \right|}}{x},\,\,\,\,\,x < 0}
\end{array}} \right.\]
D. \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{{{\log }_3}\left( {x + 2} \right),\,\,\,\,\,x > 2} \\
{{{\log }_{\dfrac{1}{2}}}\left( {{x^2} + 5} \right),\,\,\,\,\,x < 2}
\end{array}} \right.\]
Answer
567.3k+ views
Hint: We are going to solve this question by trial and error method. We have to take each of the given options into checking. First, we check the left-hand limit and then the right-hand limit. Then we find the difference between both the limits, which is the jump of the discontinuity. According to the jump, we conclude the final asked solution.
Complete answer:
Given, four options for us to check the asked condition. Let us check by each option.
Option A:
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{\left( {{e^{\dfrac{1}{x}}} + 1} \right)}}{{\left( {{e^{\dfrac{1}{x}}} - 1} \right)}},\,\,\,\,\,x < 0} \\
{\dfrac{{\left( {1 - \cos x} \right)}}{x},\,\,\,\,\,x < 0}
\end{array}} \right.\]
\[LHL = \mathop {\lim }\limits_{x \to 0} \]
\[f(x) = \mathop {\lim }\limits_{x \to 0} f\left( {0 - h} \right)\]
Substituting the limit values:
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {{e^{\dfrac{{ - 1}}{h}}} + 1} \right)}}{{\left( {{e^{\dfrac{{ - 1}}{h}}} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{0 + 1}}{{0 - 1}} = - 1\]
Now taking the\[RHL\];
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} \]
\[ \Rightarrow f(x) = \mathop {\lim }\limits_{_{h \to 0}} f\left( {h + 0} \right)\]
Substituting the limits;
\[\mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\left( {1 - \cos \,h} \right)}}{h}\]
Substituting another value for the above formula, we get;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{2{{\sin }^2}\dfrac{h}{2}}}{h}\]
Simplifying we get,
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{h}{4}\dfrac{{2{{\sin }^2}\dfrac{h}{2}}}{{\dfrac{h}{2}}}\]
Substituting limit value,
\[ \Rightarrow 0 \times 1 = 0\]
\[RHL = 0\]
The difference between \[LHL\] and \[RHL\]\[ = 0 - ( - 1)\]\[ = 1\]
Therefore, the jump of the discontinuity is \[1\].
Option B:
\[\begin{gathered}
f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{\left( {{x^{\dfrac{1}{3}}} - 1} \right)}}{{\left( {{x^{\dfrac{1}{2}}} - 1} \right)}},\,\,\,\,\,x > 1} \\
{\dfrac{{\ln x}}{{\left( {x - 1} \right)}},\,\,\,\,\,\dfrac{1}{2} < x < 1}
\end{array}} \right. \\
\\
\end{gathered} \]
\[RHL = \mathop {\lim }\limits_{x \to {1^ + }} \]
\[f(x) = \mathop {\lim }\limits_{h \to 0} f(1 + h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{{{\left( {1 + h} \right)}^{\dfrac{1}{3}}} - 1}}{{{{\left( {1 + h} \right)}^{\dfrac{1}{2}}} - 1}}\]
Expanding the above term, we get;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\left( {1 + \dfrac{h}{3} - \dfrac{{{h^2}}}{9} + ...} \right) - 1}}{{\left( {1 + \dfrac{h}{2} - \dfrac{{{h^2}}}{8} + ...} \right) - 1}}\]
Taking the common terms out, we get;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{h\left( {\dfrac{1}{3} - \dfrac{h}{9} + ...} \right)}}{{h\left( {\dfrac{1}{2} - \dfrac{h}{8} + ...} \right)}}\]
Now cancelling and approximating the above equation, we get;
\[ \Rightarrow \dfrac{2}{3}\]
\[RHL = \dfrac{2}{3}\]
Now taking the \[LHL\];
\[LHL = \mathop {\lim }\limits_{x \to {0^ + }} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f\left( {h + 0} \right)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\ln \left( {1 - h} \right)}}{{1 - h - 1}}\]
Simplifying we get,
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\ln \left( {1 + \left( { - h} \right)} \right)}}{{ - h}}\]
\[\because \mathop {\lim }\limits_{_{x \to 0}} \dfrac{{\ln (1 + x)}}{x} = 1\],
Applying this value for the above equation, we get;
\[LHL = 1\]
The difference between \[LHL\] and \[RHL\] \[ = 1 - \dfrac{2}{3} = \dfrac{1}{3}\]
The answer is less than one. Hence the jump of discontinuity is not one, nor greater than one.
Option C:
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{{\sin }^{ - 1}}2x}}{{{{\tan }^{ - 1}}3x}},\,\,\,\,\,x \in \left( {0,\left. {\dfrac{1}{2}} \right]} \right.} \\
{\dfrac{{\left| {\sin x} \right|}}{x},\,\,\,\,\,x < 0}
\end{array}} \right.\]
\[LHL = \mathop {\lim }\limits_{_{x \to {0^ - }}} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f\left( {0 - h} \right)\]
Substituting the limit values:
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\sin \left| {0 - h} \right|}}{{ - h}}\]
Simplifying we get
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\left| { - \sin \,h} \right|}}{{ - h}}\]
Taking the numerator out of the modulus, we get;
\[ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \,h}}{{ - h}}\]
Now, applying the limits, we get;
\[ \Rightarrow - 1\]
\[LHL = - 1\]
Taking the \[RHL\]
\[RHL = \mathop {\lim }\limits_{_{x \to {0^ + }}} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f(0 + h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{{{\sin }^{ - 1}}2h}}{{{{\tan }^{ - 1}}3h}}\]
Multiplying the terms in the numerator and denominator;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{2h\dfrac{{{{\sin }^{ - 1}}2h}}{{2h}}}}{{3h\dfrac{{{{\tan }^{ - 1}}3h}}{{3h}}}}\]
Cancelling out the common terms and applying the limits, we get;
\[RHL = \dfrac{2}{3}\]
The difference between \[LHL\] and \[RHL\] \[ = \dfrac{2}{3} - 1\] \[ = \dfrac{5}{3} > 1\]
Therefore, the jump of discontinuity for the function is greater than one.
Option D:
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{{{\log }_3}\left( {x + 2} \right),\,\,\,\,\,x > 2} \\
{{{\log }_{\dfrac{1}{2}}}\left( {{x^2} + 5} \right),\,\,\,\,\,x < 2}
\end{array}} \right.\]
\[RHL = \mathop {\lim }\limits_{x \to {2^ + }} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f(2 + h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} {\log _3}\left( {h + 4} \right)\]
Applying the limits, we get;
\[{\log _3}4 = 1.26\]
\[RHL = 1.26\]
Now, taking \[LHL\]
\[LHL = \mathop {\lim }\limits_{_{x \to {2^ - }}} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f(2 - h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} {\log _{\dfrac{1}{2}}}\left( {{h^2} - 4h + 9} \right)\]
Simplifying the above term, we get;
\[ \Rightarrow {\log _{\dfrac{1}{2}}}9 = - 0.653\]
The difference between \[LHL\] and \[RHL\] \[ = 1.26 - ( - 0.653) > 1\]
Hence, the jump of discontinuity for the function is greater than one.
Hence, the correct answers are option (A), (C) and (D).
Note: We have to remember two things here, one is jump discontinuity and another one is a trial and error method.
A jump discontinuity is when the two-sided limit doesn’t exist because the one-sided limits aren’t equal. Asymptotic or infinite discontinuity is when the two-sided limit doesn’t exist because it’s unbounded.
Trial and error refers to the process of verifying that a certain choice is right (or wrong). We simply substitute that choice into the problem and check.
Complete answer:
Given, four options for us to check the asked condition. Let us check by each option.
Option A:
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{\left( {{e^{\dfrac{1}{x}}} + 1} \right)}}{{\left( {{e^{\dfrac{1}{x}}} - 1} \right)}},\,\,\,\,\,x < 0} \\
{\dfrac{{\left( {1 - \cos x} \right)}}{x},\,\,\,\,\,x < 0}
\end{array}} \right.\]
\[LHL = \mathop {\lim }\limits_{x \to 0} \]
\[f(x) = \mathop {\lim }\limits_{x \to 0} f\left( {0 - h} \right)\]
Substituting the limit values:
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {{e^{\dfrac{{ - 1}}{h}}} + 1} \right)}}{{\left( {{e^{\dfrac{{ - 1}}{h}}} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{0 + 1}}{{0 - 1}} = - 1\]
Now taking the\[RHL\];
\[RHL = \mathop {\lim }\limits_{x \to {0^ + }} \]
\[ \Rightarrow f(x) = \mathop {\lim }\limits_{_{h \to 0}} f\left( {h + 0} \right)\]
Substituting the limits;
\[\mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\left( {1 - \cos \,h} \right)}}{h}\]
Substituting another value for the above formula, we get;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{2{{\sin }^2}\dfrac{h}{2}}}{h}\]
Simplifying we get,
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{h}{4}\dfrac{{2{{\sin }^2}\dfrac{h}{2}}}{{\dfrac{h}{2}}}\]
Substituting limit value,
\[ \Rightarrow 0 \times 1 = 0\]
\[RHL = 0\]
The difference between \[LHL\] and \[RHL\]\[ = 0 - ( - 1)\]\[ = 1\]
Therefore, the jump of the discontinuity is \[1\].
Option B:
\[\begin{gathered}
f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{\left( {{x^{\dfrac{1}{3}}} - 1} \right)}}{{\left( {{x^{\dfrac{1}{2}}} - 1} \right)}},\,\,\,\,\,x > 1} \\
{\dfrac{{\ln x}}{{\left( {x - 1} \right)}},\,\,\,\,\,\dfrac{1}{2} < x < 1}
\end{array}} \right. \\
\\
\end{gathered} \]
\[RHL = \mathop {\lim }\limits_{x \to {1^ + }} \]
\[f(x) = \mathop {\lim }\limits_{h \to 0} f(1 + h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{{{\left( {1 + h} \right)}^{\dfrac{1}{3}}} - 1}}{{{{\left( {1 + h} \right)}^{\dfrac{1}{2}}} - 1}}\]
Expanding the above term, we get;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\left( {1 + \dfrac{h}{3} - \dfrac{{{h^2}}}{9} + ...} \right) - 1}}{{\left( {1 + \dfrac{h}{2} - \dfrac{{{h^2}}}{8} + ...} \right) - 1}}\]
Taking the common terms out, we get;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{h\left( {\dfrac{1}{3} - \dfrac{h}{9} + ...} \right)}}{{h\left( {\dfrac{1}{2} - \dfrac{h}{8} + ...} \right)}}\]
Now cancelling and approximating the above equation, we get;
\[ \Rightarrow \dfrac{2}{3}\]
\[RHL = \dfrac{2}{3}\]
Now taking the \[LHL\];
\[LHL = \mathop {\lim }\limits_{x \to {0^ + }} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f\left( {h + 0} \right)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\ln \left( {1 - h} \right)}}{{1 - h - 1}}\]
Simplifying we get,
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\ln \left( {1 + \left( { - h} \right)} \right)}}{{ - h}}\]
\[\because \mathop {\lim }\limits_{_{x \to 0}} \dfrac{{\ln (1 + x)}}{x} = 1\],
Applying this value for the above equation, we get;
\[LHL = 1\]
The difference between \[LHL\] and \[RHL\] \[ = 1 - \dfrac{2}{3} = \dfrac{1}{3}\]
The answer is less than one. Hence the jump of discontinuity is not one, nor greater than one.
Option C:
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{{{\sin }^{ - 1}}2x}}{{{{\tan }^{ - 1}}3x}},\,\,\,\,\,x \in \left( {0,\left. {\dfrac{1}{2}} \right]} \right.} \\
{\dfrac{{\left| {\sin x} \right|}}{x},\,\,\,\,\,x < 0}
\end{array}} \right.\]
\[LHL = \mathop {\lim }\limits_{_{x \to {0^ - }}} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f\left( {0 - h} \right)\]
Substituting the limit values:
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\sin \left| {0 - h} \right|}}{{ - h}}\]
Simplifying we get
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{\left| { - \sin \,h} \right|}}{{ - h}}\]
Taking the numerator out of the modulus, we get;
\[ \Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \,h}}{{ - h}}\]
Now, applying the limits, we get;
\[ \Rightarrow - 1\]
\[LHL = - 1\]
Taking the \[RHL\]
\[RHL = \mathop {\lim }\limits_{_{x \to {0^ + }}} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f(0 + h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{{{\sin }^{ - 1}}2h}}{{{{\tan }^{ - 1}}3h}}\]
Multiplying the terms in the numerator and denominator;
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} \dfrac{{2h\dfrac{{{{\sin }^{ - 1}}2h}}{{2h}}}}{{3h\dfrac{{{{\tan }^{ - 1}}3h}}{{3h}}}}\]
Cancelling out the common terms and applying the limits, we get;
\[RHL = \dfrac{2}{3}\]
The difference between \[LHL\] and \[RHL\] \[ = \dfrac{2}{3} - 1\] \[ = \dfrac{5}{3} > 1\]
Therefore, the jump of discontinuity for the function is greater than one.
Option D:
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{{{\log }_3}\left( {x + 2} \right),\,\,\,\,\,x > 2} \\
{{{\log }_{\dfrac{1}{2}}}\left( {{x^2} + 5} \right),\,\,\,\,\,x < 2}
\end{array}} \right.\]
\[RHL = \mathop {\lim }\limits_{x \to {2^ + }} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f(2 + h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} {\log _3}\left( {h + 4} \right)\]
Applying the limits, we get;
\[{\log _3}4 = 1.26\]
\[RHL = 1.26\]
Now, taking \[LHL\]
\[LHL = \mathop {\lim }\limits_{_{x \to {2^ - }}} \]
\[f(x) = \mathop {\lim }\limits_{_{h \to 0}} f(2 - h)\]
\[ \Rightarrow \mathop {\lim }\limits_{_{h \to 0}} {\log _{\dfrac{1}{2}}}\left( {{h^2} - 4h + 9} \right)\]
Simplifying the above term, we get;
\[ \Rightarrow {\log _{\dfrac{1}{2}}}9 = - 0.653\]
The difference between \[LHL\] and \[RHL\] \[ = 1.26 - ( - 0.653) > 1\]
Hence, the jump of discontinuity for the function is greater than one.
Hence, the correct answers are option (A), (C) and (D).
Note: We have to remember two things here, one is jump discontinuity and another one is a trial and error method.
A jump discontinuity is when the two-sided limit doesn’t exist because the one-sided limits aren’t equal. Asymptotic or infinite discontinuity is when the two-sided limit doesn’t exist because it’s unbounded.
Trial and error refers to the process of verifying that a certain choice is right (or wrong). We simply substitute that choice into the problem and check.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

