
Choose the correct option $\int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx=\_\_\_\_+x;a, x > 1$\[\]
A. $\dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a}$\[\]
B.$\dfrac{{{e}^{a\log x}}}{a\log x}+\dfrac{{{e}^{x\log a}}}{x\log a}$\[\]
C. $\dfrac{{{x}^{a-1}}}{a-1}+{{a}^{x}}\log a$\[\]
D.$\dfrac{{{e}^{a\log x}}}{\dfrac{a}{x}}+\dfrac{{{e}^{x\log a}}}{x}$\[\]
Answer
579.3k+ views
Hint: We denote the integral as \[I=\int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx=\int{{{e}^{a\log x}}}dx+\int{{{e}^{x\log a}}dx}={{I}_{1}}+{{I}_{2}}\]. We find ${{I}_{1}}$ using the standard integral on power on $x.$ We find ${{I}_{2}}$ by substituting $u=x\log a$ and the integrating with respect to $u.$ We use the logarithmic identities $m\log n=\log {{n}^{m}}$ and ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ where they are necessary.
Complete step-by-step answer:
We know the standard integration for power on $x$ as $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+c,n\in R$ and exponential function $\int{{{e}^{x}}}={{e}^{x}}+c$ where $c$ is any constant of integration.
Let us denote the given integral to evaluate in the question as $I.$ We have
\[I=\int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx\]
We are also given the condition $a,x > 1$ so that logarithms are well-defined. We know from logarithm that for some real numbers $m > 0,n > 1$ that $m\log n=\log {{n}^{m}}$. We use this identity in the integrand and proceed to have,
\[\Rightarrow I=\int{\left[ {{e}^{\log {{x}^{a}}}}+{{e}^{\log {{a}^{x}}}} \right]}dx\]
We know that logarithm and exponential are inverse function which gives us the result ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ for any continuous function $f\left( x \right).$ We use it and proceed to have,
\[\Rightarrow I=\int{\left[ {{x}^{a}}+{{a}^{x}} \right]}dx\]
We use the rule of sum of two functions in the integrand and have.
\[\Rightarrow I=\int{{{x}^{a}}dx}+\int{{{a}^{x}}dx}={{I}_{1}}+{{I}_{2}}\left( \text{say} \right)....\left( 1 \right)\]
Let us evaluate ${{I}_{1}}$ first using the standard integration for power on $x$ as,
${{I}_{1}}=\int{{{x}^{a}}dx}=\dfrac{{{x}^{a+1}}}{a+1}+{{c}_{1}}$
Here ${{c}_{1}}$is any real constant of integration. Let us proceed to evaluate ${{I}_{2}}$ . We use formula ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ for \[f\left( x \right)=a\]. We have,
\[\begin{align}
& {{I}_{2}}=\int{{{a}^{x}}dx} \\
& \Rightarrow {{I}_{2}}={{\int{\left( {{e}^{\log a}} \right)}}^{x}} \\
\end{align}\]
Let us use the identity ${{\left( {{r}^{m}} \right)}^{n}}={{r}^{mn}}$ where $r\ne 0,m,n$are real numbers. We have
\[\Rightarrow {{I}_{2}}=\int{{{e}^{x\log a}}}dx\]
Let us assign $x\log a=u$, then we differentiate both side with respect to $u$ to get $\log a\dfrac{dx}{du}=1\Rightarrow dx=\dfrac{du}{\log a}$. We substitute in the above integral to have,
\[\Rightarrow {{I}_{2}}=\int{{{e}^{u}}\dfrac{du}{\log a}}=\dfrac{1}{\log a}\int{{{e}^{u}}}du\]
We integrate the exponential function with respect to $u$ and have,
\[\Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{u}}+{{c}_{2}}\]
Here ${{c}_{2}}$ is a real constant of integration. We put back $x\log a=u$ and have,
\[\Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{x\log a}}+{{c}_{2}}\]
We use logarithmic identities at$m\log n=\log {{n}^{m}}$for $m=x,n=a$ and ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ for $f\left( x \right)={{a}^{x}}$ in the above step and have,
\[\begin{align}
& \Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{\log {{a}^{x}}}}+{{c}_{2}} \\
& \Rightarrow {{I}_{2}}=\dfrac{{{a}^{x}}}{\log a}+{{c}_{2}} \\
\end{align}\]
We put the results of ${{I}_{1}},{{I}_{2}}$ in equation (1) and have,
\[\begin{align}
& \Rightarrow I=\int{{{x}^{a}}dx}+\int{{{a}^{x}}dx}=\dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a}+{{c}_{1}}+{{c}_{2}} \\
& \Rightarrow I=\dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a}+c \\
\end{align}\]
Here $c={{c}_{1}}+{{c}_{2}}.$
So, the correct answer is “Option A”.
Note: We note that we use substitution of variables when we have to integrate composite functions. We must be careful of the confusion of formula $\int{\dfrac{1}{x}}dx=\log \left| x \right|+c$ and also with $\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{\ln a}+c$ where $a > 0,a\ne 1$. We can directly evaluate ${{I}_{2}}$ using the formula $\int{{{f}^{'}}\left( x \right){{e}^{x}}dx=f\left( x \right)+c}$
Complete step-by-step answer:
We know the standard integration for power on $x$ as $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+c,n\in R$ and exponential function $\int{{{e}^{x}}}={{e}^{x}}+c$ where $c$ is any constant of integration.
Let us denote the given integral to evaluate in the question as $I.$ We have
\[I=\int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx\]
We are also given the condition $a,x > 1$ so that logarithms are well-defined. We know from logarithm that for some real numbers $m > 0,n > 1$ that $m\log n=\log {{n}^{m}}$. We use this identity in the integrand and proceed to have,
\[\Rightarrow I=\int{\left[ {{e}^{\log {{x}^{a}}}}+{{e}^{\log {{a}^{x}}}} \right]}dx\]
We know that logarithm and exponential are inverse function which gives us the result ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ for any continuous function $f\left( x \right).$ We use it and proceed to have,
\[\Rightarrow I=\int{\left[ {{x}^{a}}+{{a}^{x}} \right]}dx\]
We use the rule of sum of two functions in the integrand and have.
\[\Rightarrow I=\int{{{x}^{a}}dx}+\int{{{a}^{x}}dx}={{I}_{1}}+{{I}_{2}}\left( \text{say} \right)....\left( 1 \right)\]
Let us evaluate ${{I}_{1}}$ first using the standard integration for power on $x$ as,
${{I}_{1}}=\int{{{x}^{a}}dx}=\dfrac{{{x}^{a+1}}}{a+1}+{{c}_{1}}$
Here ${{c}_{1}}$is any real constant of integration. Let us proceed to evaluate ${{I}_{2}}$ . We use formula ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ for \[f\left( x \right)=a\]. We have,
\[\begin{align}
& {{I}_{2}}=\int{{{a}^{x}}dx} \\
& \Rightarrow {{I}_{2}}={{\int{\left( {{e}^{\log a}} \right)}}^{x}} \\
\end{align}\]
Let us use the identity ${{\left( {{r}^{m}} \right)}^{n}}={{r}^{mn}}$ where $r\ne 0,m,n$are real numbers. We have
\[\Rightarrow {{I}_{2}}=\int{{{e}^{x\log a}}}dx\]
Let us assign $x\log a=u$, then we differentiate both side with respect to $u$ to get $\log a\dfrac{dx}{du}=1\Rightarrow dx=\dfrac{du}{\log a}$. We substitute in the above integral to have,
\[\Rightarrow {{I}_{2}}=\int{{{e}^{u}}\dfrac{du}{\log a}}=\dfrac{1}{\log a}\int{{{e}^{u}}}du\]
We integrate the exponential function with respect to $u$ and have,
\[\Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{u}}+{{c}_{2}}\]
Here ${{c}_{2}}$ is a real constant of integration. We put back $x\log a=u$ and have,
\[\Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{x\log a}}+{{c}_{2}}\]
We use logarithmic identities at$m\log n=\log {{n}^{m}}$for $m=x,n=a$ and ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ for $f\left( x \right)={{a}^{x}}$ in the above step and have,
\[\begin{align}
& \Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{\log {{a}^{x}}}}+{{c}_{2}} \\
& \Rightarrow {{I}_{2}}=\dfrac{{{a}^{x}}}{\log a}+{{c}_{2}} \\
\end{align}\]
We put the results of ${{I}_{1}},{{I}_{2}}$ in equation (1) and have,
\[\begin{align}
& \Rightarrow I=\int{{{x}^{a}}dx}+\int{{{a}^{x}}dx}=\dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a}+{{c}_{1}}+{{c}_{2}} \\
& \Rightarrow I=\dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a}+c \\
\end{align}\]
Here $c={{c}_{1}}+{{c}_{2}}.$
So, the correct answer is “Option A”.
Note: We note that we use substitution of variables when we have to integrate composite functions. We must be careful of the confusion of formula $\int{\dfrac{1}{x}}dx=\log \left| x \right|+c$ and also with $\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{\ln a}+c$ where $a > 0,a\ne 1$. We can directly evaluate ${{I}_{2}}$ using the formula $\int{{{f}^{'}}\left( x \right){{e}^{x}}dx=f\left( x \right)+c}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

