
Choose the correct option: \[\int_0^{\dfrac{\pi }{4}} {\frac{{\sec x}}{{(1 + \tan x)(2 + \tan x)}}} \]
A. ${\log _e}\left( {\dfrac{2}{3}} \right)$
B. ${\log _e}3$
C. $\dfrac{1}{2}{\log _e}\left( {\dfrac{4}{3}} \right)$
D. ${\log _e}\left( {\dfrac{4}{3}} \right)$
Answer
504.9k+ views
Hint: Here given an integral of a function of which we have to find the integration of the function, here the function is called the integrand. There are two types of integrals, which are definite integrals and indefinite integrals. Definite integrals are those integrals for which there is a particular limit on the integrals. Whereas for the indefinite integrals there are no such limits on the integral. This integration is done by the method of substitution and partial fractions.
Step-By-Step answer:
There are 3 different methods of solving integrations which are:
> Integration by substitution.
> Integration by partial fractions.
> Integration by parts.
Here we are using the first two methods of integrations in order to solve the given integral.
\[\int_0^{\dfrac{\pi }{4}} {\dfrac{{\sec x}}{{(1 + \tan x)(2 + \tan x)}}} \]
Now applying the method of integration by substitution.
Let $\tan x = t$
Now differentiate the above expression on both sides:
$ \Rightarrow {\sec ^2}xdx = dt$
Hence the upper and the lower limits become:
$\tan x = t$
As $x = 0$$ \Rightarrow \tan 0 = 0$
$\therefore $Lower limit : $t = 0$
As \[x = \dfrac{\pi }{4} \Rightarrow \tan \dfrac{\pi }{4} = 1\]
$\therefore $Upper limit : $t = 1$
Substituting the above two expressions in the given definite integral gives:
$ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt$
Now applying the method of integration by partial fractions.
Consider \[\dfrac{1}{{(1 + t)(2 + t)}}\], now splitting this complex fraction into partial fractions:
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{A}{{1 + t}} + \dfrac{B}{{2 + t}}$
Simplifying the R.H.S:
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{{A(2 + t) + B(1 + t)}}{{(1 + t)(2 + t)}}$
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{{(A + B)t + 2A + B}}{{(1 + t)(2 + t)}}$
On comparing the both sides, we get the values of A and B:
$ \Rightarrow A + B = 0$
$ \Rightarrow 2A + B = 1$
We have two equations and two variables, hence obtaining the values of A and B:
$ \Rightarrow A = 1;B = - 1$
Substituting these values in the integral, as given by:
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{1}{{1 + t}} + \dfrac{{ - 1}}{{2 + t}}$
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = \int\limits_0^1 {\left( {\dfrac{1}{{1 + t}} + \dfrac{{ - 1}}{{2 + t}}} \right)} dt\]
Splitting the integrals on the R.H.S:
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = \int\limits_0^1 {\dfrac{1}{{1 + t}}} dt + \int\limits_0^1 {\dfrac{{ - 1}}{{2 + t}}} dt\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}(1 + t)_0^1 - {\log _e}(2 + t)_0^1 + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{{1 + t}}{{2 + t}}} \right)_0^1 + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{{1 + 1}}{{2 + 1}}} \right) - {\log _e}\left( {\dfrac{{1 + 0}}{{2 + 0}}} \right) + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{2}{3}} \right) - {\log _e}\left( {\dfrac{1}{2}} \right) + c\]
Applying the basic formula from logarithms ${\log _e}a - {\log _e}b = {\log _e}\left( {\dfrac{a}{b}} \right)$
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\dfrac{{\left( {\dfrac{2}{3}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{4}{3}} \right) + c\]
\[\int_0^{\dfrac{\pi }{4}} {\dfrac{{\sec x}}{{(1 + \tan x)(2 + \tan x)}}} = {\log _e}\left( {\dfrac{4}{3}} \right) + c\]
Note: Please note that after applying the integration by partial fractions and solving the integral we can substitute back the value of $t = \tan x$, and the limits of x, will give the same final answer. It can be done in either of the ways, but finally we end up getting the same solution.
Step-By-Step answer:
There are 3 different methods of solving integrations which are:
> Integration by substitution.
> Integration by partial fractions.
> Integration by parts.
Here we are using the first two methods of integrations in order to solve the given integral.
\[\int_0^{\dfrac{\pi }{4}} {\dfrac{{\sec x}}{{(1 + \tan x)(2 + \tan x)}}} \]
Now applying the method of integration by substitution.
Let $\tan x = t$
Now differentiate the above expression on both sides:
$ \Rightarrow {\sec ^2}xdx = dt$
Hence the upper and the lower limits become:
$\tan x = t$
As $x = 0$$ \Rightarrow \tan 0 = 0$
$\therefore $Lower limit : $t = 0$
As \[x = \dfrac{\pi }{4} \Rightarrow \tan \dfrac{\pi }{4} = 1\]
$\therefore $Upper limit : $t = 1$
Substituting the above two expressions in the given definite integral gives:
$ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt$
Now applying the method of integration by partial fractions.
Consider \[\dfrac{1}{{(1 + t)(2 + t)}}\], now splitting this complex fraction into partial fractions:
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{A}{{1 + t}} + \dfrac{B}{{2 + t}}$
Simplifying the R.H.S:
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{{A(2 + t) + B(1 + t)}}{{(1 + t)(2 + t)}}$
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{{(A + B)t + 2A + B}}{{(1 + t)(2 + t)}}$
On comparing the both sides, we get the values of A and B:
$ \Rightarrow A + B = 0$
$ \Rightarrow 2A + B = 1$
We have two equations and two variables, hence obtaining the values of A and B:
$ \Rightarrow A = 1;B = - 1$
Substituting these values in the integral, as given by:
$ \Rightarrow \dfrac{1}{{(1 + t)(2 + t)}} = \dfrac{1}{{1 + t}} + \dfrac{{ - 1}}{{2 + t}}$
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = \int\limits_0^1 {\left( {\dfrac{1}{{1 + t}} + \dfrac{{ - 1}}{{2 + t}}} \right)} dt\]
Splitting the integrals on the R.H.S:
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = \int\limits_0^1 {\dfrac{1}{{1 + t}}} dt + \int\limits_0^1 {\dfrac{{ - 1}}{{2 + t}}} dt\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}(1 + t)_0^1 - {\log _e}(2 + t)_0^1 + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{{1 + t}}{{2 + t}}} \right)_0^1 + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{{1 + 1}}{{2 + 1}}} \right) - {\log _e}\left( {\dfrac{{1 + 0}}{{2 + 0}}} \right) + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{2}{3}} \right) - {\log _e}\left( {\dfrac{1}{2}} \right) + c\]
Applying the basic formula from logarithms ${\log _e}a - {\log _e}b = {\log _e}\left( {\dfrac{a}{b}} \right)$
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\dfrac{{\left( {\dfrac{2}{3}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} + c\]
\[ \Rightarrow \int\limits_0^1 {\dfrac{1}{{(1 + t)(2 + t)}}} dt = {\log _e}\left( {\dfrac{4}{3}} \right) + c\]
\[\int_0^{\dfrac{\pi }{4}} {\dfrac{{\sec x}}{{(1 + \tan x)(2 + \tan x)}}} = {\log _e}\left( {\dfrac{4}{3}} \right) + c\]
Note: Please note that after applying the integration by partial fractions and solving the integral we can substitute back the value of $t = \tan x$, and the limits of x, will give the same final answer. It can be done in either of the ways, but finally we end up getting the same solution.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
