
Check whether the differential equation $ (xy)dx - ({x^3} - {y^3})dy = 0 $ is homogeneous or not.
Answer
587.1k+ views
Hint: Firstly, we will convert the given equation into the form of $ \dfrac{{dy}}{{dx}} $ . Then we will assume $ \dfrac{{dy}}{{dx}} = F(x,y) $ . Further we will find $ {\lambda}F(x,y) $ .Thereafter we will check if it is homogeneous or not.
Complete step-by-step answer:
The given differential equation is
\[xydx - ({x^3} + {y^3})dy = 0\]
\[xy\,dx = 0 + ({x^3} + {y^3})dy\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}\]
\[ \Rightarrow \dfrac{{xy}}{{{x^3} + {y^3}}} = \dfrac{{dy}}{{dx}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Let $ F(x,y) = \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Now, I will check, it is homogeneous or not. We will put $ \lambda $ to $ xandy $ in the above $ F\left( {x,y} \right) $ ,we will get $ $
$ F(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}{x^3} + {\lambda ^3}{y^3}}} $
Taking common $ {\lambda ^3} $ in denominator, we have
\[F\left( {\lambda x,\lambda y} \right) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}\left( {{x^3} + {y^3}} \right)}}\]
$ F(\lambda x,\lambda y) = \dfrac{{xy}}{{\lambda ({x^3} + {y^3})}} $
$ \ne {\lambda}F(x,y) $
$ \therefore $ The given equation is not homogeneous
Note: Students must know that if the given equation is a homogeneous then $ f(x,y) = {\lambda}F(x,y) $ and if the given equation is not homogeneous then $ F(x,y) \ne {\lambda}F(x,y) $ .
Complete step-by-step answer:
The given differential equation is
\[xydx - ({x^3} + {y^3})dy = 0\]
\[xy\,dx = 0 + ({x^3} + {y^3})dy\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}\]
\[ \Rightarrow \dfrac{{xy}}{{{x^3} + {y^3}}} = \dfrac{{dy}}{{dx}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Let $ F(x,y) = \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Now, I will check, it is homogeneous or not. We will put $ \lambda $ to $ xandy $ in the above $ F\left( {x,y} \right) $ ,we will get $ $
$ F(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}{x^3} + {\lambda ^3}{y^3}}} $
Taking common $ {\lambda ^3} $ in denominator, we have
\[F\left( {\lambda x,\lambda y} \right) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}\left( {{x^3} + {y^3}} \right)}}\]
$ F(\lambda x,\lambda y) = \dfrac{{xy}}{{\lambda ({x^3} + {y^3})}} $
$ \ne {\lambda}F(x,y) $
$ \therefore $ The given equation is not homogeneous
Note: Students must know that if the given equation is a homogeneous then $ f(x,y) = {\lambda}F(x,y) $ and if the given equation is not homogeneous then $ F(x,y) \ne {\lambda}F(x,y) $ .
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

