
Check whether the differential equation $ (xy)dx - ({x^3} - {y^3})dy = 0 $ is homogeneous or not.
Answer
574.2k+ views
Hint: Firstly, we will convert the given equation into the form of $ \dfrac{{dy}}{{dx}} $ . Then we will assume $ \dfrac{{dy}}{{dx}} = F(x,y) $ . Further we will find $ {\lambda}F(x,y) $ .Thereafter we will check if it is homogeneous or not.
Complete step-by-step answer:
The given differential equation is
\[xydx - ({x^3} + {y^3})dy = 0\]
\[xy\,dx = 0 + ({x^3} + {y^3})dy\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}\]
\[ \Rightarrow \dfrac{{xy}}{{{x^3} + {y^3}}} = \dfrac{{dy}}{{dx}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Let $ F(x,y) = \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Now, I will check, it is homogeneous or not. We will put $ \lambda $ to $ xandy $ in the above $ F\left( {x,y} \right) $ ,we will get $ $
$ F(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}{x^3} + {\lambda ^3}{y^3}}} $
Taking common $ {\lambda ^3} $ in denominator, we have
\[F\left( {\lambda x,\lambda y} \right) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}\left( {{x^3} + {y^3}} \right)}}\]
$ F(\lambda x,\lambda y) = \dfrac{{xy}}{{\lambda ({x^3} + {y^3})}} $
$ \ne {\lambda}F(x,y) $
$ \therefore $ The given equation is not homogeneous
Note: Students must know that if the given equation is a homogeneous then $ f(x,y) = {\lambda}F(x,y) $ and if the given equation is not homogeneous then $ F(x,y) \ne {\lambda}F(x,y) $ .
Complete step-by-step answer:
The given differential equation is
\[xydx - ({x^3} + {y^3})dy = 0\]
\[xy\,dx = 0 + ({x^3} + {y^3})dy\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}\]
\[ \Rightarrow \dfrac{{xy}}{{{x^3} + {y^3}}} = \dfrac{{dy}}{{dx}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Let $ F(x,y) = \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Now, I will check, it is homogeneous or not. We will put $ \lambda $ to $ xandy $ in the above $ F\left( {x,y} \right) $ ,we will get $ $
$ F(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}{x^3} + {\lambda ^3}{y^3}}} $
Taking common $ {\lambda ^3} $ in denominator, we have
\[F\left( {\lambda x,\lambda y} \right) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}\left( {{x^3} + {y^3}} \right)}}\]
$ F(\lambda x,\lambda y) = \dfrac{{xy}}{{\lambda ({x^3} + {y^3})}} $
$ \ne {\lambda}F(x,y) $
$ \therefore $ The given equation is not homogeneous
Note: Students must know that if the given equation is a homogeneous then $ f(x,y) = {\lambda}F(x,y) $ and if the given equation is not homogeneous then $ F(x,y) \ne {\lambda}F(x,y) $ .
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

How is democracy better than other forms of government class 12 social science CBSE

