
Check whether the differential equation $ (xy)dx - ({x^3} - {y^3})dy = 0 $ is homogeneous or not.
Answer
526.5k+ views
Hint: Firstly, we will convert the given equation into the form of $ \dfrac{{dy}}{{dx}} $ . Then we will assume $ \dfrac{{dy}}{{dx}} = F(x,y) $ . Further we will find $ {\lambda}F(x,y) $ .Thereafter we will check if it is homogeneous or not.
Complete step-by-step answer:
The given differential equation is
\[xydx - ({x^3} + {y^3})dy = 0\]
\[xy\,dx = 0 + ({x^3} + {y^3})dy\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}\]
\[ \Rightarrow \dfrac{{xy}}{{{x^3} + {y^3}}} = \dfrac{{dy}}{{dx}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Let $ F(x,y) = \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Now, I will check, it is homogeneous or not. We will put $ \lambda $ to $ xandy $ in the above $ F\left( {x,y} \right) $ ,we will get $ $
$ F(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}{x^3} + {\lambda ^3}{y^3}}} $
Taking common $ {\lambda ^3} $ in denominator, we have
\[F\left( {\lambda x,\lambda y} \right) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}\left( {{x^3} + {y^3}} \right)}}\]
$ F(\lambda x,\lambda y) = \dfrac{{xy}}{{\lambda ({x^3} + {y^3})}} $
$ \ne {\lambda}F(x,y) $
$ \therefore $ The given equation is not homogeneous
Note: Students must know that if the given equation is a homogeneous then $ f(x,y) = {\lambda}F(x,y) $ and if the given equation is not homogeneous then $ F(x,y) \ne {\lambda}F(x,y) $ .
Complete step-by-step answer:
The given differential equation is
\[xydx - ({x^3} + {y^3})dy = 0\]
\[xy\,dx = 0 + ({x^3} + {y^3})dy\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}\]
\[ \Rightarrow \dfrac{{xy}}{{{x^3} + {y^3}}} = \dfrac{{dy}}{{dx}}\]
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Let $ F(x,y) = \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}} $
Now, I will check, it is homogeneous or not. We will put $ \lambda $ to $ xandy $ in the above $ F\left( {x,y} \right) $ ,we will get $ $
$ F(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}{x^3} + {\lambda ^3}{y^3}}} $
Taking common $ {\lambda ^3} $ in denominator, we have
\[F\left( {\lambda x,\lambda y} \right) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}\left( {{x^3} + {y^3}} \right)}}\]
$ F(\lambda x,\lambda y) = \dfrac{{xy}}{{\lambda ({x^3} + {y^3})}} $
$ \ne {\lambda}F(x,y) $
$ \therefore $ The given equation is not homogeneous
Note: Students must know that if the given equation is a homogeneous then $ f(x,y) = {\lambda}F(x,y) $ and if the given equation is not homogeneous then $ F(x,y) \ne {\lambda}F(x,y) $ .
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
