
Check the commutativity and associativity of the following binary operation:
$' \odot '$ on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
Answer
598.8k+ views
Hint – Commutativity property means, $a \odot b = b \odot a$, where $' \odot '$ is a binary operation and associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

