
Check the commutativity and associativity of the following binary operation:
$' \odot '$ on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
Answer
615k+ views
Hint – Commutativity property means, $a \odot b = b \odot a$, where $' \odot '$ is a binary operation and associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

