
Check if the points with position vectors $6\vec{a}-4\vec{b}+10\vec{c},-5\vec{a}+3\vec{b}+10\vec{c},4\vec{a}-6\vec{b}-10\vec{c}\text{ and }2\vec{b}+10\vec{c}$ are coplanar if $\vec{a},\vec{b},\vec{c}$ are non-coplanar vectors.
Answer
517.2k+ views
Hint: In this question, we are given position vectors of four points and we have to check if they are coplanar or not. For this, we will first consider these points as P, Q, R, S and their position vectors as $\overrightarrow{OP},\overrightarrow{OQ},\overrightarrow{OR},\overrightarrow{OS}$. Then, we will find $\overrightarrow{PQ},\overrightarrow{PR},\overrightarrow{PS}$. After this, we will put the coefficient of $\vec{a},\vec{b},\vec{c}$ in the determinant form and find its value to check coplanarity. For three vectors ${{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},{{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\text{ and }{{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ the determinant $\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$ should be equal to zero for the vectors to be coplanar.
Complete step-by-step solution:
Here, we are given points as P, Q, R, S
Their position vectors are
\[\begin{align}
& \overrightarrow{OP}=6\vec{a}-4\vec{b}+10\vec{c} \\
& \overrightarrow{OQ}=-5\vec{a}+3\vec{b}+10\vec{c} \\
& \overrightarrow{OR}=4\vec{a}-6\vec{b}-10\vec{c} \\
& \overrightarrow{OS}=2\vec{b}+10\vec{c} \\
\end{align}\]
As we are given four vectors, we have to change them to three vectors by finding vectors $\overrightarrow{PQ},\overrightarrow{PR},\overrightarrow{PS}$.
We know, \[\overrightarrow{PQ}=\text{Position vector of }\overrightarrow{OQ}-\text{Position vector of }\overrightarrow{OP}\]
Therefore,
\[\begin{align}
& \overrightarrow{PQ}=\left( -5\vec{a}+3\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow -5\vec{a}+3\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -11\vec{a}+7\vec{b} \\
\end{align}\]
Similarly,
\[\begin{align}
& \overrightarrow{PR}=\text{Position vector of }\overrightarrow{OR}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PR}=\left( 4\vec{a}-6\vec{b}-10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 4\vec{a}-6\vec{b}-10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -2\vec{a}-2\vec{b}-20\vec{c} \\
\end{align}\]
And
\[\begin{align}
& \overrightarrow{PS}=\text{Position vector of }\overrightarrow{OS}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PS}=\left( 2\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 2\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -6\vec{a}+6\vec{b} \\
\end{align}\]
Now let us check if the vectors obtained are coplanar or not by taking the coefficient of vectors obtained as rows of the determinant matrix, hence, the determinant matrix becomes
\[\left| \begin{matrix}
-11 & 7 & 0 \\
-2 & -2 & -20 \\
-6 & 6 & 0 \\
\end{matrix} \right|\]
Let us calculate determinant of this matrix using third column, we get:
\[\begin{align}
& \text{Determinant}=\left( 0 \right)\left( -12+12 \right)-\left( -20 \right)\left( -66+42 \right)+0 \\
& \Rightarrow 20\left( 24 \right)=480 \\
\end{align}\]
Since, determinant of coefficient of vectors obtained is not equal to zero, hence, given vectors are not coplanar.
Note: While converting four vectors to three vectors, we can take vectors with respect to $\vec{R},\vec{S}\text{ or }\vec{Q}$ also, which means, we can take $\overrightarrow{RP},\overrightarrow{RQ},\overrightarrow{RS}\Rightarrow \overrightarrow{SP},\overrightarrow{SQ},\overrightarrow{SR}\Rightarrow \overrightarrow{QP},\overrightarrow{QR},\overrightarrow{QS}$ vectors also. Students should note that, while taking determinant, take care of the sign for every element. Sign is determined as ${{\left( -1 \right)}^{\text{No}\text{.of rows+No}\text{.of columns}}}$. For example, for element in second row and third column, the sign will be ${{\left( -1 \right)}^{2+3}}={{\left( -1 \right)}^{5}}=-1$. Also, determinant can be taken using any row or any column. While finding $\overrightarrow{AB}$ always subtract position vector of $\overrightarrow{A}$ from position vector of $\overrightarrow{A}$ only and don't change the order. $\overrightarrow{AB}\text{ and }\overrightarrow{BA}$ represent two different vectors.
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$ should be equal to zero for the vectors to be coplanar.
Complete step-by-step solution:
Here, we are given points as P, Q, R, S
Their position vectors are
\[\begin{align}
& \overrightarrow{OP}=6\vec{a}-4\vec{b}+10\vec{c} \\
& \overrightarrow{OQ}=-5\vec{a}+3\vec{b}+10\vec{c} \\
& \overrightarrow{OR}=4\vec{a}-6\vec{b}-10\vec{c} \\
& \overrightarrow{OS}=2\vec{b}+10\vec{c} \\
\end{align}\]
As we are given four vectors, we have to change them to three vectors by finding vectors $\overrightarrow{PQ},\overrightarrow{PR},\overrightarrow{PS}$.
We know, \[\overrightarrow{PQ}=\text{Position vector of }\overrightarrow{OQ}-\text{Position vector of }\overrightarrow{OP}\]
Therefore,
\[\begin{align}
& \overrightarrow{PQ}=\left( -5\vec{a}+3\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow -5\vec{a}+3\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -11\vec{a}+7\vec{b} \\
\end{align}\]
Similarly,
\[\begin{align}
& \overrightarrow{PR}=\text{Position vector of }\overrightarrow{OR}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PR}=\left( 4\vec{a}-6\vec{b}-10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 4\vec{a}-6\vec{b}-10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -2\vec{a}-2\vec{b}-20\vec{c} \\
\end{align}\]
And
\[\begin{align}
& \overrightarrow{PS}=\text{Position vector of }\overrightarrow{OS}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PS}=\left( 2\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 2\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -6\vec{a}+6\vec{b} \\
\end{align}\]
Now let us check if the vectors obtained are coplanar or not by taking the coefficient of vectors obtained as rows of the determinant matrix, hence, the determinant matrix becomes
\[\left| \begin{matrix}
-11 & 7 & 0 \\
-2 & -2 & -20 \\
-6 & 6 & 0 \\
\end{matrix} \right|\]
Let us calculate determinant of this matrix using third column, we get:
\[\begin{align}
& \text{Determinant}=\left( 0 \right)\left( -12+12 \right)-\left( -20 \right)\left( -66+42 \right)+0 \\
& \Rightarrow 20\left( 24 \right)=480 \\
\end{align}\]
Since, determinant of coefficient of vectors obtained is not equal to zero, hence, given vectors are not coplanar.
Note: While converting four vectors to three vectors, we can take vectors with respect to $\vec{R},\vec{S}\text{ or }\vec{Q}$ also, which means, we can take $\overrightarrow{RP},\overrightarrow{RQ},\overrightarrow{RS}\Rightarrow \overrightarrow{SP},\overrightarrow{SQ},\overrightarrow{SR}\Rightarrow \overrightarrow{QP},\overrightarrow{QR},\overrightarrow{QS}$ vectors also. Students should note that, while taking determinant, take care of the sign for every element. Sign is determined as ${{\left( -1 \right)}^{\text{No}\text{.of rows+No}\text{.of columns}}}$. For example, for element in second row and third column, the sign will be ${{\left( -1 \right)}^{2+3}}={{\left( -1 \right)}^{5}}=-1$. Also, determinant can be taken using any row or any column. While finding $\overrightarrow{AB}$ always subtract position vector of $\overrightarrow{A}$ from position vector of $\overrightarrow{A}$ only and don't change the order. $\overrightarrow{AB}\text{ and }\overrightarrow{BA}$ represent two different vectors.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
