
Check if the points with position vectors $6\vec{a}-4\vec{b}+10\vec{c},-5\vec{a}+3\vec{b}+10\vec{c},4\vec{a}-6\vec{b}-10\vec{c}\text{ and }2\vec{b}+10\vec{c}$ are coplanar if $\vec{a},\vec{b},\vec{c}$ are non-coplanar vectors.
Answer
561.9k+ views
Hint: In this question, we are given position vectors of four points and we have to check if they are coplanar or not. For this, we will first consider these points as P, Q, R, S and their position vectors as $\overrightarrow{OP},\overrightarrow{OQ},\overrightarrow{OR},\overrightarrow{OS}$. Then, we will find $\overrightarrow{PQ},\overrightarrow{PR},\overrightarrow{PS}$. After this, we will put the coefficient of $\vec{a},\vec{b},\vec{c}$ in the determinant form and find its value to check coplanarity. For three vectors ${{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},{{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\text{ and }{{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}$ the determinant $\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$ should be equal to zero for the vectors to be coplanar.
Complete step-by-step solution:
Here, we are given points as P, Q, R, S
Their position vectors are
\[\begin{align}
& \overrightarrow{OP}=6\vec{a}-4\vec{b}+10\vec{c} \\
& \overrightarrow{OQ}=-5\vec{a}+3\vec{b}+10\vec{c} \\
& \overrightarrow{OR}=4\vec{a}-6\vec{b}-10\vec{c} \\
& \overrightarrow{OS}=2\vec{b}+10\vec{c} \\
\end{align}\]
As we are given four vectors, we have to change them to three vectors by finding vectors $\overrightarrow{PQ},\overrightarrow{PR},\overrightarrow{PS}$.
We know, \[\overrightarrow{PQ}=\text{Position vector of }\overrightarrow{OQ}-\text{Position vector of }\overrightarrow{OP}\]
Therefore,
\[\begin{align}
& \overrightarrow{PQ}=\left( -5\vec{a}+3\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow -5\vec{a}+3\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -11\vec{a}+7\vec{b} \\
\end{align}\]
Similarly,
\[\begin{align}
& \overrightarrow{PR}=\text{Position vector of }\overrightarrow{OR}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PR}=\left( 4\vec{a}-6\vec{b}-10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 4\vec{a}-6\vec{b}-10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -2\vec{a}-2\vec{b}-20\vec{c} \\
\end{align}\]
And
\[\begin{align}
& \overrightarrow{PS}=\text{Position vector of }\overrightarrow{OS}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PS}=\left( 2\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 2\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -6\vec{a}+6\vec{b} \\
\end{align}\]
Now let us check if the vectors obtained are coplanar or not by taking the coefficient of vectors obtained as rows of the determinant matrix, hence, the determinant matrix becomes
\[\left| \begin{matrix}
-11 & 7 & 0 \\
-2 & -2 & -20 \\
-6 & 6 & 0 \\
\end{matrix} \right|\]
Let us calculate determinant of this matrix using third column, we get:
\[\begin{align}
& \text{Determinant}=\left( 0 \right)\left( -12+12 \right)-\left( -20 \right)\left( -66+42 \right)+0 \\
& \Rightarrow 20\left( 24 \right)=480 \\
\end{align}\]
Since, determinant of coefficient of vectors obtained is not equal to zero, hence, given vectors are not coplanar.
Note: While converting four vectors to three vectors, we can take vectors with respect to $\vec{R},\vec{S}\text{ or }\vec{Q}$ also, which means, we can take $\overrightarrow{RP},\overrightarrow{RQ},\overrightarrow{RS}\Rightarrow \overrightarrow{SP},\overrightarrow{SQ},\overrightarrow{SR}\Rightarrow \overrightarrow{QP},\overrightarrow{QR},\overrightarrow{QS}$ vectors also. Students should note that, while taking determinant, take care of the sign for every element. Sign is determined as ${{\left( -1 \right)}^{\text{No}\text{.of rows+No}\text{.of columns}}}$. For example, for element in second row and third column, the sign will be ${{\left( -1 \right)}^{2+3}}={{\left( -1 \right)}^{5}}=-1$. Also, determinant can be taken using any row or any column. While finding $\overrightarrow{AB}$ always subtract position vector of $\overrightarrow{A}$ from position vector of $\overrightarrow{A}$ only and don't change the order. $\overrightarrow{AB}\text{ and }\overrightarrow{BA}$ represent two different vectors.
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$ should be equal to zero for the vectors to be coplanar.
Complete step-by-step solution:
Here, we are given points as P, Q, R, S
Their position vectors are
\[\begin{align}
& \overrightarrow{OP}=6\vec{a}-4\vec{b}+10\vec{c} \\
& \overrightarrow{OQ}=-5\vec{a}+3\vec{b}+10\vec{c} \\
& \overrightarrow{OR}=4\vec{a}-6\vec{b}-10\vec{c} \\
& \overrightarrow{OS}=2\vec{b}+10\vec{c} \\
\end{align}\]
As we are given four vectors, we have to change them to three vectors by finding vectors $\overrightarrow{PQ},\overrightarrow{PR},\overrightarrow{PS}$.
We know, \[\overrightarrow{PQ}=\text{Position vector of }\overrightarrow{OQ}-\text{Position vector of }\overrightarrow{OP}\]
Therefore,
\[\begin{align}
& \overrightarrow{PQ}=\left( -5\vec{a}+3\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow -5\vec{a}+3\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -11\vec{a}+7\vec{b} \\
\end{align}\]
Similarly,
\[\begin{align}
& \overrightarrow{PR}=\text{Position vector of }\overrightarrow{OR}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PR}=\left( 4\vec{a}-6\vec{b}-10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 4\vec{a}-6\vec{b}-10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -2\vec{a}-2\vec{b}-20\vec{c} \\
\end{align}\]
And
\[\begin{align}
& \overrightarrow{PS}=\text{Position vector of }\overrightarrow{OS}-\text{Position vector of }\overrightarrow{OP} \\
& \overrightarrow{PS}=\left( 2\vec{b}+10\vec{c} \right)-\left( 6\vec{a}-4\vec{b}+10\vec{c} \right) \\
& \Rightarrow 2\vec{b}+10\vec{c}-6\vec{a}+4\vec{b}-10\vec{c} \\
& \Rightarrow -6\vec{a}+6\vec{b} \\
\end{align}\]
Now let us check if the vectors obtained are coplanar or not by taking the coefficient of vectors obtained as rows of the determinant matrix, hence, the determinant matrix becomes
\[\left| \begin{matrix}
-11 & 7 & 0 \\
-2 & -2 & -20 \\
-6 & 6 & 0 \\
\end{matrix} \right|\]
Let us calculate determinant of this matrix using third column, we get:
\[\begin{align}
& \text{Determinant}=\left( 0 \right)\left( -12+12 \right)-\left( -20 \right)\left( -66+42 \right)+0 \\
& \Rightarrow 20\left( 24 \right)=480 \\
\end{align}\]
Since, determinant of coefficient of vectors obtained is not equal to zero, hence, given vectors are not coplanar.
Note: While converting four vectors to three vectors, we can take vectors with respect to $\vec{R},\vec{S}\text{ or }\vec{Q}$ also, which means, we can take $\overrightarrow{RP},\overrightarrow{RQ},\overrightarrow{RS}\Rightarrow \overrightarrow{SP},\overrightarrow{SQ},\overrightarrow{SR}\Rightarrow \overrightarrow{QP},\overrightarrow{QR},\overrightarrow{QS}$ vectors also. Students should note that, while taking determinant, take care of the sign for every element. Sign is determined as ${{\left( -1 \right)}^{\text{No}\text{.of rows+No}\text{.of columns}}}$. For example, for element in second row and third column, the sign will be ${{\left( -1 \right)}^{2+3}}={{\left( -1 \right)}^{5}}=-1$. Also, determinant can be taken using any row or any column. While finding $\overrightarrow{AB}$ always subtract position vector of $\overrightarrow{A}$ from position vector of $\overrightarrow{A}$ only and don't change the order. $\overrightarrow{AB}\text{ and }\overrightarrow{BA}$ represent two different vectors.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

