
Capacitor blocks direct current but easily passes alternating current. Why?
Answer
463.8k+ views
Hint:Any circuit containing a capacitor, the capacitive reactance offers the resistance to the current flowing through the capacitor. The capacitive reactance is inversely proportional to the frequency of the circuit. As a direct current has zero frequency, the capacitor offers infinite resistance to the current flowing through it.
Complete step by step answer:
To understand clearly, let's first consider an a.c. circuit containing a capacitor of capacitance $C$.The e.m.f. of a.c. source is,
$E = {E_0}\sin \omega t$
Where $\omega $ is the angular frequency of the a.c. source.
We know that the expression to calculate the charge on the capacitor is $q = EC$.
$q = C{E_0}\sin \omega t$
The current flowing through the capacitor is $I = \dfrac{{dq}}{{dt}}$.
$I = \dfrac{d}{{dt}}\left( {C{E_0}\sin \omega t} \right)$
$ \Rightarrow I = \omega C{E_0}\cos \omega t$
We can arrange the above equation as follows
$I = \dfrac{{{E_0}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}\sin \left( {\omega t + \dfrac{\pi }{2}} \right)$
The peak value of a.c. current,
${I_0} = \dfrac{{{E_0}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}$
Now it is clear that the factor $\dfrac{1}{{\omega C}}$ offers opposition to the flow of current through the capacitor. This factor is called capacitive reactance ${X_C}$.
${X_C} = \dfrac{1}{{\omega C}}$
Also, we know that $\omega = 2\pi f$.
Where, $f$ is the frequency of the a.c. source.
The capacitive reactance becomes
${X_C} = \dfrac{1}{{2\pi fC}}$
For a.c. circuit $f \ne 0$, therefore a.c. current can pass through a capacitor.
Now comes to the D.C. circuit containing a capacitor only.
For D.C. circuit, the frequency $f = 0$
$\therefore {X_C} = \dfrac{1}{0} = \infty $
Therefore, a capacitor offers infinite opposition to d.c. current.In other words, a capacitor block d.c. current but passes a.c. current.
Note:In d.c. circuit, the polarity of the source does not alternate with time and hence the current flows steadily in one direction. Therefore, the frequency of d.c. circuit is zero.But in a.c. circuit, the magnitude of e.m.f. of the source changes with time and direction reverses periodically. Therefore, an a.c. the circuit has a frequency.
Complete step by step answer:
To understand clearly, let's first consider an a.c. circuit containing a capacitor of capacitance $C$.The e.m.f. of a.c. source is,
$E = {E_0}\sin \omega t$
Where $\omega $ is the angular frequency of the a.c. source.
We know that the expression to calculate the charge on the capacitor is $q = EC$.
$q = C{E_0}\sin \omega t$
The current flowing through the capacitor is $I = \dfrac{{dq}}{{dt}}$.
$I = \dfrac{d}{{dt}}\left( {C{E_0}\sin \omega t} \right)$
$ \Rightarrow I = \omega C{E_0}\cos \omega t$
We can arrange the above equation as follows
$I = \dfrac{{{E_0}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}\sin \left( {\omega t + \dfrac{\pi }{2}} \right)$
The peak value of a.c. current,
${I_0} = \dfrac{{{E_0}}}{{\left( {\dfrac{1}{{\omega C}}} \right)}}$
Now it is clear that the factor $\dfrac{1}{{\omega C}}$ offers opposition to the flow of current through the capacitor. This factor is called capacitive reactance ${X_C}$.
${X_C} = \dfrac{1}{{\omega C}}$
Also, we know that $\omega = 2\pi f$.
Where, $f$ is the frequency of the a.c. source.
The capacitive reactance becomes
${X_C} = \dfrac{1}{{2\pi fC}}$
For a.c. circuit $f \ne 0$, therefore a.c. current can pass through a capacitor.
Now comes to the D.C. circuit containing a capacitor only.
For D.C. circuit, the frequency $f = 0$
$\therefore {X_C} = \dfrac{1}{0} = \infty $
Therefore, a capacitor offers infinite opposition to d.c. current.In other words, a capacitor block d.c. current but passes a.c. current.
Note:In d.c. circuit, the polarity of the source does not alternate with time and hence the current flows steadily in one direction. Therefore, the frequency of d.c. circuit is zero.But in a.c. circuit, the magnitude of e.m.f. of the source changes with time and direction reverses periodically. Therefore, an a.c. the circuit has a frequency.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

