
Calculate the reversible potential of oxygen electrode in a solution of \[\text{ pH = 1 }\], when the partial pressure of ${{\text{O}}_{\text{2}}}$ is \[\text{1}{{\text{0}}^{\text{-2}}}\text{atm}\] [Assume\[\text{E}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}^{\text{0}}\text{= 1}\text{.23V}\] SHE at 1 atm and \[\text{2}{{\text{5}}^{\text{0}}}\text{C}\]
(A)\[\text{ 1}\text{.19 V }\]
(B)\[\text{ 1}\text{.71 V }\]
(C)\[\text{ 1}\text{.97 V }\]
(D)\[\text{ 1}\text{.112 V }\]
Answer
562.5k+ views
Hint: The hydrogen ion concentration is found to be related to the voltage of the hydrogen electrode. The concentration is expressed in the form of pH and pH is related to the electrode potential by the Nernst equation.
Complete step by step answer:
The pH or pOH of the solution is related to the hydrogen or hydroxide ion concentration. The pH is generally represented as the hydrogen potential.
$\text{pH=-log}\left[ {{\text{H}}^{\text{+}}} \right]$
But the pH and pOH are related as,
$\text{14 = pH + pOH}$
The Nernst equation can be modified for the concentration of ions in the solution and with the partial pressure of the gas at the electrode. The Nernst equation is
\[{{\text{E}}_{\text{Cell}}}\text{=E}_{\text{cell}}^{\text{0}}\text{-}\dfrac{\text{0}\text{.0591}}{\text{n}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{\text{Concentration of ion}}{\text{partial pressure at electrode}}\]
We are given the following data,
The pH of the solution is 1.0
The partial pressure of oxygen at the electrode (${{p}_{{{o}_{2}}}}$) is \[\text{1}{{\text{0}}^{\text{-2}}}\text{atm}\]
The standard electrode potential $\text{E}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}^{\text{0}}$ is given as 1.23V at 1 atm and ${{25}^{0}}\text{C}$
The reaction at the oxygen electrode between the ${{\text{O}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}\text{O}$is,
\[{{\text{O}}_{\text{2}}}\text{+2}{{\text{H}}_{\text{2}}}\text{O+4}{{\text{e}}^{\text{-}}}\to \text{4O}{{\text{H}}^{\text{-}}}\]
The pH of the solution is 1.
Since we know that,
$\text{pOH = 14}-\text{pH=14}-\text{1=13}$
Since, $\text{pOH=-log}\left[ \text{O}{{\text{H}}^{-}} \right]$
Therefore, $\left[ \text{O}{{\text{H}}^{-}} \right]={{10}^{\text{-poH}}}$
Here, $\left[ \text{O}{{\text{H}}^{-}} \right]={{10}^{\text{-13}}}\text{M}$
Let’s use the Nernst equation. The Nernst equation for partial pressure of oxygen and concentration of hydroxide can be written as,
\[{{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}\text{=E}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}^{\text{0}}\text{-}\dfrac{\text{0}\text{.0591}}{\text{n}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{concentration of hydroxide} \right]}{\text{partial pressure of oxygen}}\]
Let's substitute the values.
\[{{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}\text{=E}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}^{\text{0}}\text{-}\dfrac{\text{0}\text{.0591}}{\text{4}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{{{\left[ \text{O}{{\text{H}}^{-}} \right]}^{4}}}{p{{o}_{2}}}\]
Since no.of electrons involved in the reaction is 4.
\[\begin{align}
& {{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}\text{= 1}\text{.23}-\dfrac{\text{0}\text{.0591}}{\text{4}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{{{({{10}^{-13}})}^{4}}}{{{10}^{-2}}} \\
& \text{ = 1}\text{.23}-\dfrac{\text{0}\text{.0591}}{\text{4}}\text{lo}{{\text{g}}_{\text{10}}}{{10}^{-50}} \\
& \text{ = 1}\text{.23}-\dfrac{\text{0}\text{.0591}}{\text{4}}\times (-50) \\
& \text{ = 1}\text{.23+}\dfrac{2.95}{4} \\
& \text{ = 1}\text{.23+0}\text{.7375} \\
& \therefore {{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}=1.967\simeq 1.97\text{ } \\
\end{align}\]
Therefore , the reversible potential of oxygen is equal to \[1.97\text{ V}\].
Hence, (C) is the correct option.
Note: The $\dfrac{\text{0}\text{.0591}}{\text{n}}$value in the Nernst equation is obtained from the Nernst equation apply to the system at the standard condition. It is equal to the $\dfrac{\text{2}\text{.303 }\!\!\times\!\!\text{ R }\!\!\times\!\!\text{ T}}{\text{nF}}$. Here, R is the gas constant is room temperature $298K$ and F is Faraday's constant $\text{ }96500\text{C }$.
Complete step by step answer:
The pH or pOH of the solution is related to the hydrogen or hydroxide ion concentration. The pH is generally represented as the hydrogen potential.
$\text{pH=-log}\left[ {{\text{H}}^{\text{+}}} \right]$
But the pH and pOH are related as,
$\text{14 = pH + pOH}$
The Nernst equation can be modified for the concentration of ions in the solution and with the partial pressure of the gas at the electrode. The Nernst equation is
\[{{\text{E}}_{\text{Cell}}}\text{=E}_{\text{cell}}^{\text{0}}\text{-}\dfrac{\text{0}\text{.0591}}{\text{n}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{\text{Concentration of ion}}{\text{partial pressure at electrode}}\]
We are given the following data,
The pH of the solution is 1.0
The partial pressure of oxygen at the electrode (${{p}_{{{o}_{2}}}}$) is \[\text{1}{{\text{0}}^{\text{-2}}}\text{atm}\]
The standard electrode potential $\text{E}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}^{\text{0}}$ is given as 1.23V at 1 atm and ${{25}^{0}}\text{C}$
The reaction at the oxygen electrode between the ${{\text{O}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}\text{O}$is,
\[{{\text{O}}_{\text{2}}}\text{+2}{{\text{H}}_{\text{2}}}\text{O+4}{{\text{e}}^{\text{-}}}\to \text{4O}{{\text{H}}^{\text{-}}}\]
The pH of the solution is 1.
Since we know that,
$\text{pOH = 14}-\text{pH=14}-\text{1=13}$
Since, $\text{pOH=-log}\left[ \text{O}{{\text{H}}^{-}} \right]$
Therefore, $\left[ \text{O}{{\text{H}}^{-}} \right]={{10}^{\text{-poH}}}$
Here, $\left[ \text{O}{{\text{H}}^{-}} \right]={{10}^{\text{-13}}}\text{M}$
Let’s use the Nernst equation. The Nernst equation for partial pressure of oxygen and concentration of hydroxide can be written as,
\[{{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}\text{=E}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}^{\text{0}}\text{-}\dfrac{\text{0}\text{.0591}}{\text{n}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{concentration of hydroxide} \right]}{\text{partial pressure of oxygen}}\]
Let's substitute the values.
\[{{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}\text{=E}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}^{\text{0}}\text{-}\dfrac{\text{0}\text{.0591}}{\text{4}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{{{\left[ \text{O}{{\text{H}}^{-}} \right]}^{4}}}{p{{o}_{2}}}\]
Since no.of electrons involved in the reaction is 4.
\[\begin{align}
& {{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}\text{= 1}\text{.23}-\dfrac{\text{0}\text{.0591}}{\text{4}}\text{lo}{{\text{g}}_{\text{10}}}\dfrac{{{({{10}^{-13}})}^{4}}}{{{10}^{-2}}} \\
& \text{ = 1}\text{.23}-\dfrac{\text{0}\text{.0591}}{\text{4}}\text{lo}{{\text{g}}_{\text{10}}}{{10}^{-50}} \\
& \text{ = 1}\text{.23}-\dfrac{\text{0}\text{.0591}}{\text{4}}\times (-50) \\
& \text{ = 1}\text{.23+}\dfrac{2.95}{4} \\
& \text{ = 1}\text{.23+0}\text{.7375} \\
& \therefore {{\text{E}}_{{{\text{O}}_{\text{2}}}\text{/}{{\text{H}}_{\text{2}}}\text{O}}}=1.967\simeq 1.97\text{ } \\
\end{align}\]
Therefore , the reversible potential of oxygen is equal to \[1.97\text{ V}\].
Hence, (C) is the correct option.
Note: The $\dfrac{\text{0}\text{.0591}}{\text{n}}$value in the Nernst equation is obtained from the Nernst equation apply to the system at the standard condition. It is equal to the $\dfrac{\text{2}\text{.303 }\!\!\times\!\!\text{ R }\!\!\times\!\!\text{ T}}{\text{nF}}$. Here, R is the gas constant is room temperature $298K$ and F is Faraday's constant $\text{ }96500\text{C }$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

