
Calculate the reduction potential of a half cell consisting of a platinum electrode immersed in $2.0M$ $F{e^{ + 2}}$ and $0.02M$ $F{e^{ + 3}}$solution. Given, $E_{F{e^{ + 2}}/F{e^{ + 3}}}^ \circ = 0.771V$
Answer
555.9k+ views
Hint:
The Nernst equation is employed to calculate the voltage of an electrochemical cell or to seek out the concentration of 1 of the components of the cell. The Nernst equation relates the equilibrium cell potential (also known as the Nernst potential) to its concentration gradient across a membrane.
Complete step by step answer:
The equation may be written as follows:
\[{E_{cell}}\; = {\text{ }}{E^0}_{cell}\; - {\text{ }}\left( {RT/nF} \right)lnQ\]
\[{E_{cell}}\; = \]cell potential under nonstandard conditions (V)
\[{E^0}_{cell}\; = \]cell potential under standard conditions
\[R{\text{ }} = \]gas constant, which is \[8.31\](volt-coulomb)/(mol-K)
\[T{\text{ }} = \]Temperature (Kelvin)
\[n{\text{ }} = \]number of moles of electrons exchanged in an electrochemical reaction (unit-mol)
\[F{\text{ }} = \]expressed as Faraday's constant, \[96500\] coulombs/mol
\[Q{\text{ }} = \]the reaction quotient, which is the equilibrium expression with the initial concentrations rather than the equilibrium concentrations
The Nernst equation can also be represented differently:
\[{E_{cell}}\; = {\text{ }}{E^0}_{cell}\; - {\text{ }}\left( {2.303*RT/nF} \right)logQ\]
at \[298\]K, \[{E_{cell}}\; = {\text{ }}{E^0}_{cell}\; - {\text{ }}\left( {0.0591{\text{ }}V/n} \right)log{\text{ }}Q\]
The half reaction of iron at the electrode is as follows:
\[F{e^{ + 3}} + {e^ - }\; \to F{e^{ + 2}}\]
Given $E_{F{e^{ + 2}}/F{e^{ + 3}}}^ \circ = 0.771V$
The molar concentrations of the ferrous and ferric ions are given as follows:
$\left[ {F{e^{ + 2}}} \right] = 2.0M$
$\left[ {F{e^{ + 3}}} \right] = 0.02M$
Substituting the values in the Nernst equation as follows:
\[E = {E^ \circ } - 0.0591\;log\dfrac{{\left[ {F{e^{ + 2}}} \right]}}{{[F{e^{ + 3}}]}}\]
\[ = 0.771 - 0.0591log(\dfrac{2}{{0.02}})\]
∴On solving, we get the electrode potential of a half cell of platinum electrode as :
\[E = 0.6528volt\]
Note:A half-reaction is defined as the incomplete transfer of electrons. In the oxidation half-reaction, a substance loses some free electrons. In the reduction half-reaction, a substance gains some free electrons. Although, in both the cases, none of the electrons completely transfer from one chemical to another.
Each half-reaction contains a standard reduction potential. The word "potential" comes from the fact that this value measures the potential a half-reaction has to create electricity. The half-reaction has a standard reduction potential which is measured for the reduction form of a half-reaction.
The Nernst equation is employed to calculate the voltage of an electrochemical cell or to seek out the concentration of 1 of the components of the cell. The Nernst equation relates the equilibrium cell potential (also known as the Nernst potential) to its concentration gradient across a membrane.
Complete step by step answer:
The equation may be written as follows:
\[{E_{cell}}\; = {\text{ }}{E^0}_{cell}\; - {\text{ }}\left( {RT/nF} \right)lnQ\]
\[{E_{cell}}\; = \]cell potential under nonstandard conditions (V)
\[{E^0}_{cell}\; = \]cell potential under standard conditions
\[R{\text{ }} = \]gas constant, which is \[8.31\](volt-coulomb)/(mol-K)
\[T{\text{ }} = \]Temperature (Kelvin)
\[n{\text{ }} = \]number of moles of electrons exchanged in an electrochemical reaction (unit-mol)
\[F{\text{ }} = \]expressed as Faraday's constant, \[96500\] coulombs/mol
\[Q{\text{ }} = \]the reaction quotient, which is the equilibrium expression with the initial concentrations rather than the equilibrium concentrations
The Nernst equation can also be represented differently:
\[{E_{cell}}\; = {\text{ }}{E^0}_{cell}\; - {\text{ }}\left( {2.303*RT/nF} \right)logQ\]
at \[298\]K, \[{E_{cell}}\; = {\text{ }}{E^0}_{cell}\; - {\text{ }}\left( {0.0591{\text{ }}V/n} \right)log{\text{ }}Q\]
The half reaction of iron at the electrode is as follows:
\[F{e^{ + 3}} + {e^ - }\; \to F{e^{ + 2}}\]
Given $E_{F{e^{ + 2}}/F{e^{ + 3}}}^ \circ = 0.771V$
The molar concentrations of the ferrous and ferric ions are given as follows:
$\left[ {F{e^{ + 2}}} \right] = 2.0M$
$\left[ {F{e^{ + 3}}} \right] = 0.02M$
Substituting the values in the Nernst equation as follows:
\[E = {E^ \circ } - 0.0591\;log\dfrac{{\left[ {F{e^{ + 2}}} \right]}}{{[F{e^{ + 3}}]}}\]
\[ = 0.771 - 0.0591log(\dfrac{2}{{0.02}})\]
∴On solving, we get the electrode potential of a half cell of platinum electrode as :
\[E = 0.6528volt\]
Note:A half-reaction is defined as the incomplete transfer of electrons. In the oxidation half-reaction, a substance loses some free electrons. In the reduction half-reaction, a substance gains some free electrons. Although, in both the cases, none of the electrons completely transfer from one chemical to another.
Each half-reaction contains a standard reduction potential. The word "potential" comes from the fact that this value measures the potential a half-reaction has to create electricity. The half-reaction has a standard reduction potential which is measured for the reduction form of a half-reaction.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

