
Calculate the magnetic moment of $ F{e^{3 + }} $ in $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ and in $ {\left[ {Fe{{({H_2}O)}_6}} \right]^{3 - }} $ .
Answer
503.7k+ views
Hint: Magnetic moment is the magnetic strength and orientation of a magnetic or other object that produces a magnetic field. The direction of the magnetic moment points from the south to North Pole of the magnet (inside the magnet). The magnetic field of a magnetic dipole is proportional to its magnetic dipole. The SI unit of the magnetic dipole is $ wb \times m $ . An SI unit of magnetic moment is $ A \times {m^2}\, $ .
Complete answer:
Given, $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ and in $ {\left[ {Fe{{({H_2}O)}_6}} \right]^{3 - }} $ we have to calculate the magnetic moment of $ F{e^{3 + }} $ .
The electronic configuration of Fe is $ [Ar]3{d^6}4{s^2} $
Here the Fe is given by $ F{e^{3 + }} $ .
$ F{e^{3 + }} $ it means iron donates three electrons and possesses the oxidation state of $ + 3. $
So the electronic configuration of $ F{e^{3 + }} $ is $ [Ar]3{d^5} $
In $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ $ C{N^ - } $ is a strong field ligand. Thus the $ F{e^{3 + }} $ show low spinning splitting. $ F{e^{3 + }} $ is a $ {d^5} $ and contains $ n = 1 $ unpaired electron. So, magnetic moment of $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ is given by
As we know that magnetic moment is
$ \therefore u = \sqrt {n(n + 2)} $
Put the value of n
$ \Rightarrow u = \sqrt {1(1 + 2)} $
Simplify
$ \Rightarrow u = \sqrt 3 $
$ \Rightarrow u = 1.732BM $
So the magnetic moment of $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ is $ 1.732BM $
In $ {\left[ {Fe{{({H_2}O)}_6}} \right]^{3 - }} $ $ {H_2}O $ is a weak field ligand. Thus the $ F{e^{3 + }} $ shows high spinning splitting. $ F{e^{3 + }} $ is a $ {d^5} $ and contains $ n = 5 $ unpaired electron. So, magnetic moment of $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ is given by
As we know that magnetic moment is
$ \therefore u = \sqrt {n(n + 2)} $
Put the value of n
$ \Rightarrow u = \sqrt {5(5 + 2)} $
Simplify
$ \Rightarrow u = \sqrt {5 \times 7} $
$ \Rightarrow u = \sqrt {35} $
$ \Rightarrow u = 5.91BM $
So the magnetic moment of $ {\left[ {Fe{{({H_2}O)}_6}} \right]^{3 - }} $ is $ 5.91BM $
Note:
The magnetic dipole moment $ (\mu ) $ is a vector field defined as $ \mu = iA $ whose direction is perpendicular to A and determined by the right hand thumb rule. In these rules grip shows the direction of flow of current and thumbs show the direction of magnetic field. The magnetic moment is produced by two methods- motion electric charge and spin angular momentum.
Complete answer:
Given, $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ and in $ {\left[ {Fe{{({H_2}O)}_6}} \right]^{3 - }} $ we have to calculate the magnetic moment of $ F{e^{3 + }} $ .
The electronic configuration of Fe is $ [Ar]3{d^6}4{s^2} $
Here the Fe is given by $ F{e^{3 + }} $ .
$ F{e^{3 + }} $ it means iron donates three electrons and possesses the oxidation state of $ + 3. $
So the electronic configuration of $ F{e^{3 + }} $ is $ [Ar]3{d^5} $
In $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ $ C{N^ - } $ is a strong field ligand. Thus the $ F{e^{3 + }} $ show low spinning splitting. $ F{e^{3 + }} $ is a $ {d^5} $ and contains $ n = 1 $ unpaired electron. So, magnetic moment of $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ is given by
As we know that magnetic moment is
$ \therefore u = \sqrt {n(n + 2)} $
Put the value of n
$ \Rightarrow u = \sqrt {1(1 + 2)} $
Simplify
$ \Rightarrow u = \sqrt 3 $
$ \Rightarrow u = 1.732BM $
So the magnetic moment of $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ is $ 1.732BM $
In $ {\left[ {Fe{{({H_2}O)}_6}} \right]^{3 - }} $ $ {H_2}O $ is a weak field ligand. Thus the $ F{e^{3 + }} $ shows high spinning splitting. $ F{e^{3 + }} $ is a $ {d^5} $ and contains $ n = 5 $ unpaired electron. So, magnetic moment of $ {\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 + }} $ is given by
As we know that magnetic moment is
$ \therefore u = \sqrt {n(n + 2)} $
Put the value of n
$ \Rightarrow u = \sqrt {5(5 + 2)} $
Simplify
$ \Rightarrow u = \sqrt {5 \times 7} $
$ \Rightarrow u = \sqrt {35} $
$ \Rightarrow u = 5.91BM $
So the magnetic moment of $ {\left[ {Fe{{({H_2}O)}_6}} \right]^{3 - }} $ is $ 5.91BM $
Note:
The magnetic dipole moment $ (\mu ) $ is a vector field defined as $ \mu = iA $ whose direction is perpendicular to A and determined by the right hand thumb rule. In these rules grip shows the direction of flow of current and thumbs show the direction of magnetic field. The magnetic moment is produced by two methods- motion electric charge and spin angular momentum.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

