
How can I calculate the interference of waves?
Answer
541.2k+ views
Hint: Wave is known as propagating dynamic disturbance which is the change from the equilibrium of one or more quantities, it is also described by a wave equation. Waves can be periodic, those quantities oscillate again and again about an equilibrium value at frequency.
Complete step by step answer:
Two waves of equal amplitude (A) and equal frequency w, where,\[w = 2\pi f\] with a phase difference \[\phi \]
Equation of two waves are
\[
x_1 = Acoswt \\
x_2 = Acos(wt + \phi ) \\
\]:
By using this trigonometric identity
\[cos(x) + cos(y) = 2cos(\dfrac{{x + y}}{2})cos(\dfrac{{x - y}}{2})\]
By adding first and second waves
Then the resultant wave ${x_r}$ is:
\[
{x_r} = x_1 + x_2 \\
{x_r} = Acoswt + Acos(wt + \phi ) \\
\]
By simplifying the above equation,
\[{x_r} = 2Acos(\dfrac{\phi }{2})cos(\dfrac{{wt + \phi }}{2})\]
There is constructive interference or destructive interference.
First for constructive interference,
the above equation will be, \[cos(\dfrac{\phi }{2}) = 1\]
It will give values for \[\phi = 0,2\pi ,4\pi etc\]
For destructive interference,
the above equation is, \[cos(\dfrac{\phi }{2}) = 0\]
It gives values as \[\phi = \pi ,3\pi ,5\pi etc\]
If the frequencies of waves are different, but there is no phase difference:
Then it gives values for two waves
\[
x_1 = Acosw_1t \\
x_2 = Acos(w_2t) \\
\]
By using the identity then the Resultant superposed wave is
\[{x_r} = 2Acos(\dfrac{{w_1 + w_2}}{2})cos(\dfrac{{w_1 - w_2}}{2})\]
The ${x_r}$ is the resultant wave equation. Wave is the product of two waves in which the sum and difference of the original waves, then it will be beats.
Note:
Wave velocity is the velocity with which the wave travels through the medium. The velocity of a sound wave is maximum in solids because they are more elastic in nature than liquids and gases. There are two types of waves. There are sound waves and light waves. Medium is required for the propagation of sound waves where it is longitudinal. Medium is not required for the propagation of light waves which are transverse.
Complete step by step answer:
Two waves of equal amplitude (A) and equal frequency w, where,\[w = 2\pi f\] with a phase difference \[\phi \]
Equation of two waves are
\[
x_1 = Acoswt \\
x_2 = Acos(wt + \phi ) \\
\]:
By using this trigonometric identity
\[cos(x) + cos(y) = 2cos(\dfrac{{x + y}}{2})cos(\dfrac{{x - y}}{2})\]
By adding first and second waves
Then the resultant wave ${x_r}$ is:
\[
{x_r} = x_1 + x_2 \\
{x_r} = Acoswt + Acos(wt + \phi ) \\
\]
By simplifying the above equation,
\[{x_r} = 2Acos(\dfrac{\phi }{2})cos(\dfrac{{wt + \phi }}{2})\]
There is constructive interference or destructive interference.
First for constructive interference,
the above equation will be, \[cos(\dfrac{\phi }{2}) = 1\]
It will give values for \[\phi = 0,2\pi ,4\pi etc\]
For destructive interference,
the above equation is, \[cos(\dfrac{\phi }{2}) = 0\]
It gives values as \[\phi = \pi ,3\pi ,5\pi etc\]
If the frequencies of waves are different, but there is no phase difference:
Then it gives values for two waves
\[
x_1 = Acosw_1t \\
x_2 = Acos(w_2t) \\
\]
By using the identity then the Resultant superposed wave is
\[{x_r} = 2Acos(\dfrac{{w_1 + w_2}}{2})cos(\dfrac{{w_1 - w_2}}{2})\]
The ${x_r}$ is the resultant wave equation. Wave is the product of two waves in which the sum and difference of the original waves, then it will be beats.
Note:
Wave velocity is the velocity with which the wave travels through the medium. The velocity of a sound wave is maximum in solids because they are more elastic in nature than liquids and gases. There are two types of waves. There are sound waves and light waves. Medium is required for the propagation of sound waves where it is longitudinal. Medium is not required for the propagation of light waves which are transverse.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

